FOMC Service Report

16S rRNA Gene V1V3 Amplicon Sequencing

Version V1.50

Version History

The Forsyth Institute, Cambridge, MA, USA
July 25, 2025

Project ID: SRP420678


I. Project Summary

Project SRP420678 services include NGS sequencing of the V1V3 region of the 16S rRNA gene amplicons from the samples. First and foremost, please download this report, as well as the sequence raw data from the download links provided below. These links will expire after 60 days. We cannot guarantee the availability of your data after 60 days.

Full Bioinformatics analysis service was requested. We provide many analyses, starting from the raw sequence quality and noise filtering, pair reads merging, as well as chimera filtering for the sequences, using the DADA2 denosing algorithm and pipeline.

We also provide many downstream analyses such as taxonomy assignment, alpha and beta diversity analyses, and differential abundance analysis.

For taxonomy assignment, most informative would be the taxonomy barplots. We provide an interactive barplots to show the relative abundance of microbes at different taxonomy levels (from Phylum to species) that you can choose.

If you specify which groups of samples you want to compare for differential abundance, we provide both ANCOM and LEfSe differential abundance analysis.

 

II. Workflow Checklist

1.Sample Received
2.Sample Quality Evaluated
3.Sample Prepared for Sequencing
4.Next-Gen Sequencing
5.Sequence Quality Check
6.Absolute Abundance
7.Report and Raw Sequence Data Available for Download
8.Bioinformatics Analysis - Reads Processing (DADA2 Quality Trimming, Denoising, Paired Reads Merging)
9.Bioinformatics Analysis - Reads Taxonomy Assignment
10.Bioinformatics Analysis - Alpha Diversity Analysis
11.Bioinformatics Analysis - Beta Diversity Analysis
12.Bioinformatics Analysis - Differential Abundance Analysis
13.Bioinformatics Analysis - Heatmap Profile
14.Bioinformatics Analysis - Network Association
 

III. NGS Sequencing

The samples were processed and analyzed with the ZymoBIOMICS® Service: Targeted Metagenomic Sequencing (Zymo Research, Irvine, CA).

DNA Extraction: If DNA extraction was performed, the following DNA extraction kit was used according to the manufacturer’s instructions:

ZymoBIOMICS®-96 MagBead DNA Kit (Zymo Research, Irvine, CA)
N/A (DNA Extraction Not Performed)
Elution Volume: 50µL
Additional Notes: NA

Targeted Library Preparation: The DNA samples were prepared for targeted sequencing with the Quick-16S™ NGS Library Prep Kit (Zymo Research, Irvine, CA). These primers were custom designed by Zymo Research to provide the best coverage of the 16S gene while maintaining high sensitivity. The primer sets used in this project are marked below:

Quick-16S™ Primer Set V1-V2 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V1-V3 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V3-V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V6-V8 (Zymo Research, Irvine, CA)
Additional Notes: NA

The sequencing library was prepared using an innovative library preparation process in which PCR reactions were performed in real-time PCR machines to control cycles and therefore limit PCR chimera formation. The final PCR products were quantified with qPCR fluorescence readings and pooled together based on equal molarity. The final pooled library was cleaned up with the Select-a-Size DNA Clean & Concentrator™ (Zymo Research, Irvine, CA), then quantified with TapeStation® (Agilent Technologies, Santa Clara, CA) and Qubit® (Thermo Fisher Scientific, Waltham, WA).

Control Samples: The ZymoBIOMICS® Microbial Community Standard (Zymo Research, Irvine, CA) was used as a positive control for each DNA extraction, if performed. The ZymoBIOMICS® Microbial Community DNA Standard (Zymo Research, Irvine, CA) was used as a positive control for each targeted library preparation. Negative controls (i.e. blank extraction control, blank library preparation control) were included to assess the level of bioburden carried by the wet-lab process.

Sequencing: The final library was sequenced on Illumina® NextSeq 2000™ with a p1 (Illumina, Sand Diego, CA) reagent kit (600 cycles). The sequencing was performed with 25% PhiX spike-in.

Absolute Abundance Quantification*: A quantitative real-time PCR was set up with a standard curve. The standard curve was made with plasmid DNA containing one copy of the 16S gene and one copy of the fungal ITS2 region prepared in 10-fold serial dilutions. The primers used were the same as those used in Targeted Library Preparation. The equation generated by the plasmid DNA standard curve was used to calculate the number of gene copies in the reaction for each sample. The PCR input volume (2 µl) was used to calculate the number of gene copies per microliter in each DNA sample.
The number of genome copies per microliter DNA sample was calculated by dividing the gene copy number by an assumed number of gene copies per genome. The value used for 16S copies per genome is 4. The value used for ITS copies per genome is 200. The amount of DNA per microliter DNA sample was calculated using an assumed genome size of 4.64 x 106 bp, the genome size of Escherichia coli, for 16S samples, or an assumed genome size of 1.20 x 107 bp, the genome size of Saccharomyces cerevisiae, for ITS samples. This calculation is shown below:

Calculated Total DNA = Calculated Total Genome Copies × Assumed Genome Size (4.64 × 106 bp) ×
Average Molecular Weight of a DNA bp (660 g/mole/bp) ÷ Avogadro’s Number (6.022 x 1023/mole)


* Absolute Abundance Quantification is only available for 16S and ITS analyses.

The absolute abundance standard curve data can be viewed in Excel here:

The absolute abundance standard curve is shown below:

Absolute Abundance Standard Curve

 

IV. Complete Report Download

The complete report of your project, including all links in this report, can be downloaded by clicking the link provided below. The downloaded file is a compressed ZIP file and once unzipped, open the file “REPORT.html” (may only shown as "REPORT" in your computer) by double clicking it. Your default web browser will open it and you will see the exact content of this report.

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Complete report download link:

To view the report, please follow the following steps:

1.Download the .zip file from the report link above.
2.Extract all the contents of the downloaded .zip file to your desktop.
3.Open the extracted folder and find the "REPORT.html" (may shown as only "REPORT").
4.Open (double-clicking) the REPORT.html file. Your default browser will open the top age of the complete report. Within the report, there are links to view all the analyses performed for the project.

 

V. Raw Sequence Data Download

The raw NGS sequence data is available for download with the link provided below. The data is a compressed ZIP file and can be unzipped to individual sequence files. Since this is a pair-end sequencing, each of your samples is represented by two sequence files, one for READ 1, with the file extension “*_R1.fastq.gz”, another READ 2, with the file extension “*_R1.fastq.gz”. The files are in FASTQ format and are compressed. FASTQ format is a text-based data format for storing both a biological sequence and its corresponding quality scores. Most sequence analysis software will be able to open them. The Sample IDs associated with the R1 and R2 fastq files are listed in the table below:

SRR23319523Original Sample IDSRR23319523_R1.fastqSRR23319523_R2.fastq
SRR23319524SRR23319524_R1.fastqSRR23319524_R2.fastq
SRR23319525SRR23319525_R1.fastqSRR23319525_R2.fastq
SRR23319526SRR23319526_R1.fastqSRR23319526_R2.fastq
SRR23319527SRR23319527_R1.fastqSRR23319527_R2.fastq
SRR23319528SRR23319528_R1.fastqSRR23319528_R2.fastq
SRR23319529SRR23319529_R1.fastqSRR23319529_R2.fastq
SRR23319530SRR23319530_R1.fastqSRR23319530_R2.fastq
SRR23319531SRR23319531_R1.fastqSRR23319531_R2.fastq
SRR23319532SRR23319532_R1.fastqSRR23319532_R2.fastq
SRR23319533SRR23319533_R1.fastqSRR23319533_R2.fastq
SRR23319534SRR23319534_R1.fastqSRR23319534_R2.fastq
SRR23319535SRR23319535_R1.fastqSRR23319535_R2.fastq
SRR23319536SRR23319536_R1.fastqSRR23319536_R2.fastq
SRR23319537SRR23319537_R1.fastqSRR23319537_R2.fastq
SRR23319538SRR23319538_R1.fastqSRR23319538_R2.fastq
SRR23319539SRR23319539_R1.fastqSRR23319539_R2.fastq
SRR23319540SRR23319540_R1.fastqSRR23319540_R2.fastq
SRR23319541SRR23319541_R1.fastqSRR23319541_R2.fastq
SRR23319542SRR23319542_R1.fastqSRR23319542_R2.fastq
SRR23319543SRR23319543_R1.fastqSRR23319543_R2.fastq
SRR23319544SRR23319544_R1.fastqSRR23319544_R2.fastq
SRR23319545SRR23319545_R1.fastqSRR23319545_R2.fastq
SRR23319546SRR23319546_R1.fastqSRR23319546_R2.fastq
SRR23319547SRR23319547_R1.fastqSRR23319547_R2.fastq
SRR23319548SRR23319548_R1.fastqSRR23319548_R2.fastq
SRR23319549SRR23319549_R1.fastqSRR23319549_R2.fastq
SRR23319550SRR23319550_R1.fastqSRR23319550_R2.fastq
SRR23319552SRR23319552_R1.fastqSRR23319552_R2.fastq
SRR23319553SRR23319553_R1.fastqSRR23319553_R2.fastq
SRR23319554SRR23319554_R1.fastqSRR23319554_R2.fastq
SRR23319555SRR23319555_R1.fastqSRR23319555_R2.fastq
SRR23319556SRR23319556_R1.fastqSRR23319556_R2.fastq
SRR23319557SRR23319557_R1.fastqSRR23319557_R2.fastq
SRR23319558SRR23319558_R1.fastqSRR23319558_R2.fastq
SRR23319559SRR23319559_R1.fastqSRR23319559_R2.fastq
SRR23319560SRR23319560_R1.fastqSRR23319560_R2.fastq
SRR23319561SRR23319561_R1.fastqSRR23319561_R2.fastq
SRR23319562SRR23319562_R1.fastqSRR23319562_R2.fastq
SRR23319563SRR23319563_R1.fastqSRR23319563_R2.fastq
SRR23319564SRR23319564_R1.fastqSRR23319564_R2.fastq
SRR23319565SRR23319565_R1.fastqSRR23319565_R2.fastq
SRR23319566SRR23319566_R1.fastqSRR23319566_R2.fastq
SRR23319567SRR23319567_R1.fastqSRR23319567_R2.fastq
SRR23319568SRR23319568_R1.fastqSRR23319568_R2.fastq
SRR23319569SRR23319569_R1.fastqSRR23319569_R2.fastq
SRR23319570SRR23319570_R1.fastqSRR23319570_R2.fastq
SRR23319571SRR23319571_R1.fastqSRR23319571_R2.fastq
SRR23319572SRR23319572_R1.fastqSRR23319572_R2.fastq
SRR23319573SRR23319573_R1.fastqSRR23319573_R2.fastq
SRR23319574SRR23319574_R1.fastqSRR23319574_R2.fastq
SRR23319575SRR23319575_R1.fastqSRR23319575_R2.fastq
SRR23319576SRR23319576_R1.fastqSRR23319576_R2.fastq
SRR23319577SRR23319577_R1.fastqSRR23319577_R2.fastq
SRR23319578SRR23319578_R1.fastqSRR23319578_R2.fastq
SRR23319579SRR23319579_R1.fastqSRR23319579_R2.fastq
SRR23319580SRR23319580_R1.fastqSRR23319580_R2.fastq
SRR23319581SRR23319581_R1.fastqSRR23319581_R2.fastq
SRR23319582SRR23319582_R1.fastqSRR23319582_R2.fastq
SRR23319583SRR23319583_R1.fastqSRR23319583_R2.fastq
SRR23319584SRR23319584_R1.fastqSRR23319584_R2.fastq
SRR23319585SRR23319585_R1.fastqSRR23319585_R2.fastq
SRR23319586SRR23319586_R1.fastqSRR23319586_R2.fastq
SRR23319587SRR23319587_R1.fastqSRR23319587_R2.fastq
SRR23319588SRR23319588_R1.fastqSRR23319588_R2.fastq
SRR23319589SRR23319589_R1.fastqSRR23319589_R2.fastq
SRR23319590SRR23319590_R1.fastqSRR23319590_R2.fastq
SRR23319591SRR23319591_R1.fastqSRR23319591_R2.fastq
SRR23319593SRR23319593_R1.fastqSRR23319593_R2.fastq
SRR23319595SRR23319595_R1.fastqSRR23319595_R2.fastq
SRR23319596SRR23319596_R1.fastqSRR23319596_R2.fastq
SRR23319597SRR23319597_R1.fastqSRR23319597_R2.fastq
SRR23319598SRR23319598_R1.fastqSRR23319598_R2.fastq
SRR23319599SRR23319599_R1.fastqSRR23319599_R2.fastq
SRR23319600SRR23319600_R1.fastqSRR23319600_R2.fastq
SRR23319601SRR23319601_R1.fastqSRR23319601_R2.fastq
SRR23319602SRR23319602_R1.fastqSRR23319602_R2.fastq
SRR23319603SRR23319603_R1.fastqSRR23319603_R2.fastq
SRR23319604SRR23319604_R1.fastqSRR23319604_R2.fastq
SRR23319605SRR23319605_R1.fastqSRR23319605_R2.fastq
SRR23319606SRR23319606_R1.fastqSRR23319606_R2.fastq
SRR23319607SRR23319607_R1.fastqSRR23319607_R2.fastq
SRR23319608SRR23319608_R1.fastqSRR23319608_R2.fastq
SRR23319609SRR23319609_R1.fastqSRR23319609_R2.fastq
SRR23319610SRR23319610_R1.fastqSRR23319610_R2.fastq
SRR23319611SRR23319611_R1.fastqSRR23319611_R2.fastq
SRR23319612SRR23319612_R1.fastqSRR23319612_R2.fastq

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Raw sequence data download link:

 

VI. Analysis - DADA2 Read Processing

What is DADA2?

DADA2 is a software package that models and corrects Illumina-sequenced amplicon errors [1]. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. DADA2 identified more real variants and output fewer spurious sequences than other methods.

DADA2’s advantage is that it uses more of the data. The DADA2 error model incorporates quality information, which is ignored by all other methods after filtering. The DADA2 error model incorporates quantitative abundances, whereas most other methods use abundance ranks if they use abundance at all. The DADA2 error model identifies the differences between sequences, eg. A->C, whereas other methods merely count the mismatches. DADA2 can parameterize its error model from the data itself, rather than relying on previous datasets that may or may not reflect the PCR and sequencing protocols used in your study.

DADA2 Software Package is available as an R package at : https://benjjneb.github.io/dada2/index.html

References

  1. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016 Jul;13(7):581-3. doi: 10.1038/nmeth.3869. Epub 2016 May 23. PMID: 27214047; PMCID: PMC4927377.

Analysis Procedures:

DADA2 pipeline includes several tools for read quality control, including quality filtering, trimming, denoising, pair merging and chimera filtering. Below are the major processing steps of DADA2:

Step 1. Read trimming based on sequence quality The quality of NGS Illumina sequences often decreases toward the end of the reads. DADA2 allows to trim off the poor quality read ends in order to improve the error model building and pair mergicing performance.

Step 2. Learn the Error Rates The DADA2 algorithm makes use of a parametric error model (err) and every amplicon dataset has a different set of error rates. The learnErrors method learns this error model from the data, by alternating estimation of the error rates and inference of sample composition until they converge on a jointly consistent solution. As in many machine-learning problems, the algorithm must begin with an initial guess, for which the maximum possible error rates in this data are used (the error rates if only the most abundant sequence is correct and all the rest are errors).

Step 3. Infer amplicon sequence variants (ASVs) based on the error model built in previous step. This step is also called sequence "denoising". The outcome of this step is a list of ASVs that are the equivalent of oligonucleotides.

Step 4. Merge paired reads. If the sequencing products are read pairs, DADA2 will merge the R1 and R2 ASVs into single sequences. Merging is performed by aligning the denoised forward reads with the reverse-complement of the corresponding denoised reverse reads, and then constructing the merged “contig” sequences. By default, merged sequences are only output if the forward and reverse reads overlap by at least 12 bases, and are identical to each other in the overlap region (but these conditions can be changed via function arguments).

Step 5. Remove chimera. The core dada method corrects substitution and indel errors, but chimeras remain. Fortunately, the accuracy of sequence variants after denoising makes identifying chimeric ASVs simpler than when dealing with fuzzy OTUs. Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a right-segment from two more abundant “parent” sequences. The frequency of chimeric sequences varies substantially from dataset to dataset, and depends on on factors including experimental procedures and sample complexity.

Results

1. Read Quality Plots NGS sequence analaysis starts with visualizing the quality of the sequencing. Below are the quality plots of the first sample for the R1 and R2 reads separately. In gray-scale is a heat map of the frequency of each quality score at each base position. The mean quality score at each position is shown by the green line, and the quartiles of the quality score distribution by the orange lines. The forward reads are usually of better quality. It is a common practice to trim the last few nucleotides to avoid less well-controlled errors that can arise there. The trimming affects the downstream steps including error model building, merging and chimera calling. FOMC uses an empirical approach to test many combinations of different trim length in order to achieve best final amplicon sequence variants (ASVs), see the next section “Optimal trim length for ASVs”.

Quality plots for all samples:

2. Optimal trim length for ASVs The final number of merged and chimera-filtered ASVs depends on the quality filtering (hence trimming) in the very beginning of the DADA2 pipeline. In order to achieve highest number of ASVs, an empirical approach was used -

  1. Create a random subset of each sample consisting of 5,000 R1 and 5,000 R2 (to reduce computation time)
  2. Trim 10 bases at a time from the ends of both R1 and R2 up to 50 bases
  3. For each combination of trimmed length (e.g., 300x300, 300x290, 290x290 etc), the trimmed reads are subject to the entire DADA2 pipeline for chimera-filtered merged ASVs
  4. The combination with highest percentage of the input reads becoming final ASVs is selected for the complete set of data

Below is the result of such operation, showing ASV percentages of total reads for all trimming combinations (1st Column = R1 lengths in bases; 1st Row = R2 lengths in bases):

R1/R2251241231221211201
23375.66%17.81%14.34%0.00%0.00%0.00%
22318.24%14.65%0.00%0.00%0.00%0.00%
21315.02%0.00%0.00%0.00%0.00%0.00%
2030.01%0.00%0.00%0.00%0.00%0.00%
1930.00%0.00%0.00%0.00%0.00%0.00%

Based on the above result, the trim length combination of R1 = 233 bases and R2 = 251 bases (highlighted red above), was chosen for generating final ASVs for all sequences. This combination generated highest number of merged non-chimeric ASVs and was used for downstream analyses, if requested.

3. Error plots from learning the error rates After DADA2 building the error model for the set of data, it is always worthwhile, as a sanity check if nothing else, to visualize the estimated error rates. The error rates for each possible transition (A→C, A→G, …) are shown below. Points are the observed error rates for each consensus quality score. The black line shows the estimated error rates after convergence of the machine-learning algorithm. The red line shows the error rates expected under the nominal definition of the Q-score. The ideal result would be the estimated error rates (black line) are a good fit to the observed rates (points), and the error rates drop with increased quality as expected.

Forward Read R1 Error Plot


Reverse Read R2 Error Plot

The PDF version of these plots are available here:

 

4. DADA2 Result Summary The table below shows the summary of the DADA2 analysis, tracking paired read counts of each samples for all the steps during DADA2 denoising process - including end-trimming (filtered), denoising (denoisedF, denoisedF), pair merging (merged) and chimera removal (nonchim).

Sample IDSRR23319523SRR23319524SRR23319525SRR23319526SRR23319527SRR23319528SRR23319529SRR23319530SRR23319531SRR23319532SRR23319533SRR23319534SRR23319535SRR23319536SRR23319537SRR23319538SRR23319539SRR23319540SRR23319541SRR23319542SRR23319543SRR23319544SRR23319545SRR23319546SRR23319547SRR23319548SRR23319549SRR23319550SRR23319552SRR23319553SRR23319554SRR23319555SRR23319556SRR23319557SRR23319558SRR23319559SRR23319560SRR23319561SRR23319562SRR23319563SRR23319564SRR23319565SRR23319566SRR23319567SRR23319568SRR23319569SRR23319570SRR23319571SRR23319572SRR23319573SRR23319574SRR23319575SRR23319576SRR23319577SRR23319578SRR23319579SRR23319580SRR23319581SRR23319582SRR23319583SRR23319584SRR23319585SRR23319586SRR23319587SRR23319588SRR23319589SRR23319590SRR23319591SRR23319593SRR23319595SRR23319596SRR23319597SRR23319598SRR23319599SRR23319600SRR23319601SRR23319602SRR23319603SRR23319604SRR23319605SRR23319606SRR23319607SRR23319608SRR23319609SRR23319610SRR23319611SRR23319612Row SumPercentage
input106,370156,987154,840106,203122,603143,802126,559153,777118,548118,542146,378103,861127,152150,158129,381117,241114,657118,593113,687104,732143,983113,831140,787136,741160,19189,651153,773136,993115,609103,413128,943144,207129,423124,562139,370125,271148,846125,567146,169131,225125,537135,901134,102141,747149,406144,921105,099108,714114,672114,40779,87097,296103,630108,866112,31798,80092,33992,00797,388105,20288,831113,064104,75268,66987,537108,51396,46597,06786,60396,227104,33899,617115,427100,616127,338108,16492,83593,790106,701123,612106,168148,190151,822109,753106,785124,217110,91610,312,864100.00%
filtered105,757156,103153,953105,581121,892142,962125,851152,914117,888117,892145,556103,311126,426149,278128,668116,580114,002117,871113,031104,082143,106113,203140,016135,912159,20889,140152,926136,217114,959102,818128,272143,373128,643123,874138,547124,555147,930124,841145,291130,509124,821135,096133,288140,938148,572144,066104,480108,081114,016113,76679,43096,758103,055108,212111,66998,23491,99891,47496,818104,62288,360112,409104,15768,30687,036107,89895,92896,55986,11495,705103,73899,017114,745100,014126,589107,51892,33093,252106,095122,923105,602147,317150,976109,132106,140123,482110,29410,253,96899.43%
denoisedF104,490154,062152,229104,473120,752140,942124,492151,234116,001116,400142,731101,043124,084146,448126,701114,600112,597116,711111,770103,118141,832112,309138,442134,522156,78288,540149,836134,210113,634101,897126,951140,980126,581122,093136,457122,872146,082123,719143,626129,037122,986132,444130,431139,409146,255141,681102,637106,916111,968111,72378,59895,785101,811106,943110,02397,20690,63390,75595,432102,71086,999110,551102,89767,45885,228107,00094,37895,15685,03694,185102,71196,715113,14098,935124,469106,42591,37991,379104,683121,236103,318145,614148,108107,458104,541122,225109,05810,111,90898.05%
denoisedR102,388150,767149,041102,548118,237138,004122,296148,577113,524114,522139,93498,628121,245143,378124,339112,197109,875114,754109,562101,325139,059110,736135,095132,625153,53186,918146,581131,471111,508100,371124,656138,326123,605118,857133,453120,134143,187121,408140,404126,296120,474129,778127,376136,443143,160138,762100,077104,515108,874109,21476,98893,83199,120104,390107,59395,24186,70888,86492,904100,41185,092108,288100,84366,05183,220104,80392,29092,74083,21091,983100,32494,514110,56596,812121,187103,95289,59789,401102,634117,932100,971141,812144,144104,624102,337119,909107,0259,894,34595.94%
merged99,010142,385142,82599,663114,135130,278118,224143,107106,902110,337128,48690,508111,708129,750117,711104,419105,117110,373105,53398,487134,600108,188128,699127,714145,39885,763134,471124,270107,35398,108120,702129,320114,730112,911125,808114,698137,630118,244133,049121,003114,977119,377115,443130,924133,416129,91593,786100,857100,002101,95775,45791,18994,54799,546103,24292,33585,04786,77287,41793,23080,842100,35597,04163,09977,607102,27685,90788,44079,17885,98797,04884,765104,80393,128114,34499,64387,26681,62998,431110,65193,248135,518131,29897,61996,121115,303103,0489,385,64891.01%
nonchim84,767109,894107,82392,810102,29194,774105,002118,72577,48097,77383,71264,01175,960105,42985,92171,53489,29695,42892,22987,642114,065102,11796,402114,840108,70684,25977,72898,55495,24289,471109,01488,80170,03398,19587,46988,98999,480105,233102,99789,84792,46779,64769,651109,28086,42492,84573,60384,49962,24570,93673,60182,91576,77079,60590,04686,21883,22082,04959,19168,69369,43369,47386,14957,58353,14596,94562,62776,04268,60163,52086,27747,17680,64581,86284,99081,16677,97449,29884,69869,23666,56995,32982,44270,05778,615101,08287,8647,396,64671.72%

This table can be downloaded as an Excel table below:

 

5. DADA2 Amplicon Sequence Variants (ASVs). A total of 5883 unique merged and chimera-free ASV sequences were identified, and their corresponding read counts for each sample are available in the "ASV Read Count Table" with rows for the ASV sequences and columns for sample. This read count table can be used for microbial profile comparison among different samples and the sequences provided in the table can be used to taxonomy assignment.

 

The table can be downloaded from this link:

 
 

Sample Meta Information

Download Sample Meta Information
#Sample IDRunBioSampleExperimentgeo_loc_name_countrygeo_loc_name_country_continentgeo_loc_nameLibrary NameOrganismSampleNameGroup
SRR23319523SRR23319523SAMN33013297SRX19262136ChinaAsiaChina: shijiazhuangH10human saliva metagenomeH10HighCA
SRR23319524SRR23319524SAMN33013377SRX19262135ChinaAsiaChina: shijiazhuangL30human saliva metagenomeL30LowCA
SRR23319525SRR23319525SAMN33013376SRX19262134ChinaAsiaChina: shijiazhuangL29human saliva metagenomeL29LowCA
SRR23319526SRR23319526SAMN33013375SRX19262133ChinaAsiaChina: shijiazhuangL28human saliva metagenomeL28LowCA
SRR23319527SRR23319527SAMN33013374SRX19262132ChinaAsiaChina: shijiazhuangL27human saliva metagenomeL27LowCA
SRR23319528SRR23319528SAMN33013373SRX19262131ChinaAsiaChina: shijiazhuangL26human saliva metagenomeL26LowCA
SRR23319529SRR23319529SAMN33013372SRX19262130ChinaAsiaChina: shijiazhuangL25human saliva metagenomeL25LowCA
SRR23319530SRR23319530SAMN33013371SRX19262129ChinaAsiaChina: shijiazhuangL24human saliva metagenomeL24LowCA
SRR23319531SRR23319531SAMN33013370SRX19262128ChinaAsiaChina: shijiazhuangL23human saliva metagenomeL23LowCA
SRR23319532SRR23319532SAMN33013369SRX19262127ChinaAsiaChina: shijiazhuangL22human saliva metagenomeL22LowCA
SRR23319533SRR23319533SAMN33013368SRX19262126ChinaAsiaChina: shijiazhuangL21human saliva metagenomeL21LowCA
SRR23319534SRR23319534SAMN33013296SRX19262125ChinaAsiaChina: shijiazhuangH9human saliva metagenomeH9HighCA
SRR23319535SRR23319535SAMN33013367SRX19262124ChinaAsiaChina: shijiazhuangL20human saliva metagenomeL20LowCA
SRR23319536SRR23319536SAMN33013366SRX19262123ChinaAsiaChina: shijiazhuangL19human saliva metagenomeL19LowCA
SRR23319537SRR23319537SAMN33013365SRX19262122ChinaAsiaChina: shijiazhuangL18human saliva metagenomeL18LowCA
SRR23319538SRR23319538SAMN33013364SRX19262121ChinaAsiaChina: shijiazhuangL17human saliva metagenomeL17LowCA
SRR23319539SRR23319539SAMN33013363SRX19262120ChinaAsiaChina: shijiazhuangL16human saliva metagenomeL16LowCA
SRR23319540SRR23319540SAMN33013362SRX19262119ChinaAsiaChina: shijiazhuangL15human saliva metagenomeL15LowCA
SRR23319541SRR23319541SAMN33013361SRX19262118ChinaAsiaChina: shijiazhuangL14human saliva metagenomeL14LowCA
SRR23319542SRR23319542SAMN33013360SRX19262117ChinaAsiaChina: shijiazhuangL13human saliva metagenomeL13LowCA
SRR23319543SRR23319543SAMN33013359SRX19262116ChinaAsiaChina: shijiazhuangL12human saliva metagenomeL12LowCA
SRR23319544SRR23319544SAMN33013358SRX19262115ChinaAsiaChina: shijiazhuangL11human saliva metagenomeL11LowCA
SRR23319545SRR23319545SAMN33013295SRX19262114ChinaAsiaChina: shijiazhuangH8human saliva metagenomeH8HighCA
SRR23319546SRR23319546SAMN33013357SRX19262113ChinaAsiaChina: shijiazhuangL10human saliva metagenomeL10LowCA
SRR23319547SRR23319547SAMN33013356SRX19262112ChinaAsiaChina: shijiazhuangL9human saliva metagenomeL9LowCA
SRR23319548SRR23319548SAMN33013355SRX19262111ChinaAsiaChina: shijiazhuangL8human saliva metagenomeL8LowCA
SRR23319549SRR23319549SAMN33013354SRX19262110ChinaAsiaChina: shijiazhuangL7human saliva metagenomeL7LowCA
SRR23319550SRR23319550SAMN33013353SRX19262109ChinaAsiaChina: shijiazhuangL6human saliva metagenomeL6LowCA
SRR23319551SRR23319551SAMN33013352SRX19262108ChinaAsiaChina: shijiazhuangL5human saliva metagenomeL5LowCA
SRR23319552SRR23319552SAMN33013351SRX19262107ChinaAsiaChina: shijiazhuangL4human saliva metagenomeL4LowCA
SRR23319553SRR23319553SAMN33013350SRX19262106ChinaAsiaChina: shijiazhuangL3human saliva metagenomeL3LowCA
SRR23319554SRR23319554SAMN33013349SRX19262105ChinaAsiaChina: shijiazhuangL2human saliva metagenomeL2LowCA
SRR23319555SRR23319555SAMN33013348SRX19262104ChinaAsiaChina: shijiazhuangL1human saliva metagenomeL1LowCA
SRR23319556SRR23319556SAMN33013294SRX19262103ChinaAsiaChina: shijiazhuangH7human saliva metagenomeH7HighCA
SRR23319557SRR23319557SAMN33013347SRX19262102ChinaAsiaChina: shijiazhuangM30human saliva metagenomeM30MediumCA
SRR23319558SRR23319558SAMN33013346SRX19262101ChinaAsiaChina: shijiazhuangM29human saliva metagenomeM29MediumCA
SRR23319559SRR23319559SAMN33013345SRX19262100ChinaAsiaChina: shijiazhuangM28human saliva metagenomeM28MediumCA
SRR23319560SRR23319560SAMN33013344SRX19262099ChinaAsiaChina: shijiazhuangM27human saliva metagenomeM27MediumCA
SRR23319561SRR23319561SAMN33013343SRX19262098ChinaAsiaChina: shijiazhuangM26human saliva metagenomeM26MediumCA
SRR23319562SRR23319562SAMN33013342SRX19262097ChinaAsiaChina: shijiazhuangM25human saliva metagenomeM25MediumCA
SRR23319563SRR23319563SAMN33013341SRX19262096ChinaAsiaChina: shijiazhuangM24human saliva metagenomeM24MediumCA
SRR23319564SRR23319564SAMN33013340SRX19262095ChinaAsiaChina: shijiazhuangM23human saliva metagenomeM23MediumCA
SRR23319565SRR23319565SAMN33013339SRX19262094ChinaAsiaChina: shijiazhuangM22human saliva metagenomeM22MediumCA
SRR23319566SRR23319566SAMN33013338SRX19262093ChinaAsiaChina: shijiazhuangM21human saliva metagenomeM21MediumCA
SRR23319567SRR23319567SAMN33013293SRX19262092ChinaAsiaChina: shijiazhuangH6human saliva metagenomeH6HighCA
SRR23319568SRR23319568SAMN33013337SRX19262091ChinaAsiaChina: shijiazhuangM20human saliva metagenomeM20MediumCA
SRR23319569SRR23319569SAMN33013336SRX19262090ChinaAsiaChina: shijiazhuangM19human saliva metagenomeM19MediumCA
SRR23319570SRR23319570SAMN33013335SRX19262089ChinaAsiaChina: shijiazhuangM18human saliva metagenomeM18MediumCA
SRR23319571SRR23319571SAMN33013334SRX19262088ChinaAsiaChina: shijiazhuangM17human saliva metagenomeM17MediumCA
SRR23319572SRR23319572SAMN33013333SRX19262087ChinaAsiaChina: shijiazhuangM16human saliva metagenomeM16MediumCA
SRR23319573SRR23319573SAMN33013332SRX19262086ChinaAsiaChina: shijiazhuangM15human saliva metagenomeM15MediumCA
SRR23319574SRR23319574SAMN33013331SRX19262085ChinaAsiaChina: shijiazhuangM14human saliva metagenomeM14MediumCA
SRR23319575SRR23319575SAMN33013330SRX19262084ChinaAsiaChina: shijiazhuangM13human saliva metagenomeM13MediumCA
SRR23319576SRR23319576SAMN33013329SRX19262083ChinaAsiaChina: shijiazhuangM12human saliva metagenomeM12MediumCA
SRR23319577SRR23319577SAMN33013328SRX19262082ChinaAsiaChina: shijiazhuangM11human saliva metagenomeM11MediumCA
SRR23319578SRR23319578SAMN33013292SRX19262081ChinaAsiaChina: shijiazhuangH5human saliva metagenomeH5HighCA
SRR23319579SRR23319579SAMN33013327SRX19262080ChinaAsiaChina: shijiazhuangM10human saliva metagenomeM10MediumCA
SRR23319580SRR23319580SAMN33013326SRX19262079ChinaAsiaChina: shijiazhuangM9human saliva metagenomeM9MediumCA
SRR23319581SRR23319581SAMN33013325SRX19262078ChinaAsiaChina: shijiazhuangM8human saliva metagenomeM8MediumCA
SRR23319582SRR23319582SAMN33013324SRX19262077ChinaAsiaChina: shijiazhuangM7human saliva metagenomeM7MediumCA
SRR23319583SRR23319583SAMN33013323SRX19262076ChinaAsiaChina: shijiazhuangM6human saliva metagenomeM6MediumCA
SRR23319584SRR23319584SAMN33013322SRX19262075ChinaAsiaChina: shijiazhuangM5human saliva metagenomeM5MediumCA
SRR23319585SRR23319585SAMN33013321SRX19262074ChinaAsiaChina: shijiazhuangM4human saliva metagenomeM4MediumCA
SRR23319586SRR23319586SAMN33013320SRX19262073ChinaAsiaChina: shijiazhuangM3human saliva metagenomeM3MediumCA
SRR23319587SRR23319587SAMN33013319SRX19262072ChinaAsiaChina: shijiazhuangM2human saliva metagenomeM2MediumCA
SRR23319588SRR23319588SAMN33013318SRX19262071ChinaAsiaChina: shijiazhuangM1human saliva metagenomeM1MediumCA
SRR23319589SRR23319589SAMN33013291SRX19262070ChinaAsiaChina: shijiazhuangH4human saliva metagenomeH4HighCA
SRR23319590SRR23319590SAMN33013317SRX19262069ChinaAsiaChina: shijiazhuangH30human saliva metagenomeH30HighCA
SRR23319591SRR23319591SAMN33013316SRX19262068ChinaAsiaChina: shijiazhuangH29human saliva metagenomeH29HighCA
SRR23319592SRR23319592SAMN33013315SRX19262067ChinaAsiaChina: shijiazhuangH28human saliva metagenomeH28HighCA
SRR23319593SRR23319593SAMN33013314SRX19262066ChinaAsiaChina: shijiazhuangH27human saliva metagenomeH27HighCA
SRR23319594SRR23319594SAMN33013313SRX19262065ChinaAsiaChina: shijiazhuangH26human saliva metagenomeH26HighCA
SRR23319595SRR23319595SAMN33013312SRX19262064ChinaAsiaChina: shijiazhuangH25human saliva metagenomeH25HighCA
SRR23319596SRR23319596SAMN33013311SRX19262063ChinaAsiaChina: shijiazhuangH24human saliva metagenomeH24HighCA
SRR23319597SRR23319597SAMN33013310SRX19262062ChinaAsiaChina: shijiazhuangH23human saliva metagenomeH23HighCA
SRR23319598SRR23319598SAMN33013309SRX19262061ChinaAsiaChina: shijiazhuangH22human saliva metagenomeH22HighCA
SRR23319599SRR23319599SAMN33013308SRX19262060ChinaAsiaChina: shijiazhuangH21human saliva metagenomeH21HighCA
SRR23319600SRR23319600SAMN33013290SRX19262059ChinaAsiaChina: shijiazhuangH3human saliva metagenomeH3HighCA
SRR23319601SRR23319601SAMN33013307SRX19262058ChinaAsiaChina: shijiazhuangH20human saliva metagenomeH20HighCA
SRR23319602SRR23319602SAMN33013306SRX19262057ChinaAsiaChina: shijiazhuangH19human saliva metagenomeH19HighCA
SRR23319603SRR23319603SAMN33013305SRX19262056ChinaAsiaChina: shijiazhuangH18human saliva metagenomeH18HighCA
SRR23319604SRR23319604SAMN33013304SRX19262055ChinaAsiaChina: shijiazhuangH17human saliva metagenomeH17HighCA
SRR23319605SRR23319605SAMN33013303SRX19262054ChinaAsiaChina: shijiazhuangH16human saliva metagenomeH16HighCA
SRR23319606SRR23319606SAMN33013302SRX19262053ChinaAsiaChina: shijiazhuangH15human saliva metagenomeH15HighCA
SRR23319607SRR23319607SAMN33013301SRX19262052ChinaAsiaChina: shijiazhuangH14human saliva metagenomeH14HighCA
SRR23319608SRR23319608SAMN33013300SRX19262051ChinaAsiaChina: shijiazhuangH13human saliva metagenomeH13HighCA
SRR23319609SRR23319609SAMN33013299SRX19262050ChinaAsiaChina: shijiazhuangH12human saliva metagenomeH12HighCA
SRR23319610SRR23319610SAMN33013298SRX19262049ChinaAsiaChina: shijiazhuangH11human saliva metagenomeH11HighCA
SRR23319611SRR23319611SAMN33013289SRX19262048ChinaAsiaChina: shijiazhuangH2human saliva metagenomeH2HighCA
SRR23319612SRR23319612SAMN33013288SRX19262047ChinaAsiaChina: shijiazhuangH1human saliva metagenomeH1HighCA
 
 

ASV Read Counts by Samples

#Sample IDRead Count
SRR2331959747,176
SRR2331960349,298
SRR2331958853,145
SRR2331958757,583
SRR2331958259,191
SRR2331957262,245
SRR2331959062,627
SRR2331959563,520
SRR2331953464,011
SRR2331960666,569
SRR2331959368,601
SRR2331958368,693
SRR2331960569,236
SRR2331958469,433
SRR2331958569,473
SRR2331956669,651
SRR2331955670,033
SRR2331960970,057
SRR2331957370,936
SRR2331953871,534
SRR2331957473,601
SRR2331957073,603
SRR2331953575,960
SRR2331959176,042
SRR2331957676,770
SRR2331953177,480
SRR2331954977,728
SRR2331960277,974
SRR2331961078,615
SRR2331957779,605
SRR2331956579,647
SRR2331959880,645
SRR2331960181,166
SRR2331959981,862
SRR2331958182,049
SRR2331960882,442
SRR2331957582,915
SRR2331958083,220
SRR2331953383,712
SRR2331954884,259
SRR2331957184,499
SRR2331960484,698
SRR2331952384,767
SRR2331960084,990
SRR2331953785,921
SRR2331958686,149
SRR2331957986,218
SRR2331959686,277
SRR2331956886,424
SRR2331955887,469
SRR2331954287,642
SRR2331961287,864
SRR2331955588,801
SRR2331955988,989
SRR2331953989,296
SRR2331955389,471
SRR2331956389,847
SRR2331957890,046
SRR2331954192,229
SRR2331956492,467
SRR2331952692,810
SRR2331956992,845
SRR2331952894,774
SRR2331955295,242
SRR2331960795,329
SRR2331954095,428
SRR2331954596,402
SRR2331958996,945
SRR2331953297,773
SRR2331955798,195
SRR2331955098,554
SRR2331956099,480
SRR23319611101,082
SRR23319544102,117
SRR23319527102,291
SRR23319562102,997
SRR23319529105,002
SRR23319561105,233
SRR23319536105,429
SRR23319525107,823
SRR23319547108,706
SRR23319554109,014
SRR23319567109,280
SRR23319524109,894
SRR23319543114,065
SRR23319546114,840
SRR23319530118,725
 
 
 

VII. Analysis - Read Taxonomy Assignment

Read Taxonomy Assignment - Methods

 

The close-reference taxonomy assignment of the ASV sequences using BLASTN is based on the algorithm published by Al-Hebshi et. al. (2015)[2].

The species-level, open-reference 16S rRNA NGS reads taxonomy assignment pipeline

Version 20210310a
 
 

1. Raw sequences reads in FASTA format were BLASTN-searched against a combined set of 16S rRNA reference sequences - the FOMC 16S rRNA Reference Sequences version 20221029 (https://microbiome.forsyth.org/ftp/refseq/). This set consists of the HOMD (version 15.22 http://www.homd.org/index.php?name=seqDownload&file&type=R ), Mouse Oral Microbiome Database (MOMD version 5.1 https://momd.org/ftp/16S_rRNA_refseq/MOMD_16S_rRNA_RefSeq/V5.1/), and the NCBI 16S rRNA reference sequence set (https://ftp.ncbi.nlm.nih.gov/blast/db/16S_ribosomal_RNA.tar.gz). These sequences were screened and combined to remove short sequences (<1000nt), chimera, duplicated and sub-sequences, as well as sequences with poor taxonomy annotation (e.g., without species information). This process resulted in 1,015 full-length 16S rRNA sequences from HOMD V15.22, 356 from MOMD V5.1, and 22,126 from NCBI, a total of 23,497 sequences. Altogether these sequence represent a total of 17,035 oral and non-oral microbial species.

The NCBI BLASTN version 2.7.1+ (Zhang et al, 2000) [3] was used with the default parameters. Reads with ≥ 98% sequence identity to the matched reference and ≥ 90% alignment length (i.e., ≥ 90% of the read length that was aligned to the reference and was used to calculate the sequence percent identity) were classified based on the taxonomy of the reference sequence with highest sequence identity. If a read matched with reference sequences representing more than one species with equal percent identity and alignment length, it was subject to chimera checking with USEARCH program version v8.1.1861 (Edgar 2010). Non-chimeric reads with multi-species best hits were considered valid and were assigned with a unique species notation (e.g., spp) denoting unresolvable multiple species.

2. Unassigned reads (i.e., reads with < 98% identity or < 90% alignment length) were pooled together and reads < 200 bases were removed. The remaining reads were subject to the de novo operational taxonomy unit (OTU) calling and chimera checking using the USEARCH program version v8.1.1861 (Edgar 2010)[4]. The de novo OTU calling and chimera checking was done using 98% as the sequence identity cutoff, i.e., the species-level OTU. The output of this step produced species-level de novo clustered OTUs with 98% identity. Representative reads from each of the OTUs/species were then BLASTN-searched against the same reference sequence set again to determine the closest species for these potential novel species. These potential novel species were pooled together with the reads that were signed to specie-level in the previous step, for down-stream analyses.

Reference:

  1. Al-Hebshi NN, Nasher AT, Idris AM, Chen T. Robust species taxonomy assignment algorithm for 16S rRNA NGS reads: application to oral carcinoma samples. J Oral Microbiol. 2015 Sep 29;7:28934. doi: 10.3402/jom.v7.28934. PMID: 26426306; PMCID: PMC4590409.
  2. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000 Feb-Apr;7(1-2):203-14. doi: 10.1089/10665270050081478. PMID: 10890397.
  3. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12. PubMed PMID: 20709691.
  4. 3. Designations used in the taxonomy:

    	1) Taxonomy levels are indicated by these prefixes:
    	
    	   k__: domain/kingdom
    	   p__: phylum
    	   c__: class
    	   o__: order
    	   f__: family
    	   g__: genus  
    	   s__: species
    	
    	   Example: 
    	
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__faecis
    		
    	2) Unique level identified – known species:
    	   
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__hominis
    	
    	   The above example shows some reads match to a single species (all levels are unique)
    	
    	3) Non-unique level identified – known species:
    
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__multispecies_spp123_3
    	   
    	   The above example “s__multispecies_spp123_3” indicates certain reads equally match to 3 species of the 
    	   genus Roseburia; the “spp123” is a temporally assigned species ID.
    	
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__multigenus;s__multispecies_spp234_5
    	   
    	   The above example indicates certain reads match equally to 5 different species, which belong to multiple genera.; 
    	   the “spp234” is a temporally assigned species ID.
    	
    	4) Unique level identified – unknown species, potential novel species:
    	   
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ hominis_nov_97%
    	   
    	   The above example indicates that some reads have no match to any of the reference sequences with 
    	   sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. However this groups 
    	   of reads (actually the representative read from a de novo  OTU) has 96% percent identity to 
    	   Roseburia hominis, thus this is a potential novel species, closest to Roseburia hominis. 
    	   (But they are not the same species).
    	
    	5) Multiple level identified – unknown species, potential novel species:
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ multispecies_sppn123_3_nov_96%
    	
    	   The above example indicates that some reads have no match to any of the reference sequences 
    	   with sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. 
    	   However this groups of reads (actually the representative read from a de novo  OTU) 
    	   has 96% percent identity equally to 3 species in Roseburia. Thus this is no single 
    	   closest species, instead this group of reads match equally to multiple species at 96%. 
    	   Since they have passed chimera check so they represent a novel species. “sppn123” is a 
    	   temporary ID for this potential novel species. 
    

 
4. The taxonomy assignment algorithm is illustrated in this flow char below:
 
 
 
 

Read Taxonomy Assignment - Result Summary *

CodeCategoryMPC=0% (>=1 read)MPC=0.01%(>=578 reads)
ATotal reads7,396,6467,396,646
BTotal assigned reads5,780,2155,780,215
CAssigned reads in species with read count < MPC023,465
DAssigned reads in samples with read count < 50000
ETotal samples8787
FSamples with reads >= 5008787
GSamples with reads < 50000
HTotal assigned reads used for analysis (B-C-D)5,780,2155,756,750
IReads assigned to single species4,043,9974,027,007
JReads assigned to multiple species1,447,5171,442,362
KReads assigned to novel species288,701287,381
LTotal number of species54578
MNumber of single species20843
NNumber of multi-species637
ONumber of novel species27428
PTotal unassigned reads1,616,4311,616,431
QChimeric reads9,9029,902
RReads without BLASTN hits1,547,5851,547,585
SOthers: short, low quality, singletons, etc.58,94458,944
A=B+P=C+D+H+Q+R+S
E=F+G
B=C+D+H
H=I+J+K
L=M+N+O
P=Q+R+S
* MPC = Minimal percent (of all assigned reads) read count per species, species with read count < MPC were removed.
* Samples with reads < 500 were removed from downstream analyses.
* The assignment result from MPC=0.1% was used in the downstream analyses.
 
 
 

Read Taxonomy Assignment - ASV Species-Level Read Counts Table

This table shows the read counts for each sample (columns) and each species identified based on the ASV sequences. The downstream analyses were based on this table.
SPIDTaxonomySRR23319523SRR23319524SRR23319525SRR23319526SRR23319527SRR23319528SRR23319529SRR23319530SRR23319531SRR23319532SRR23319533SRR23319534SRR23319535SRR23319536SRR23319537SRR23319538SRR23319539SRR23319540SRR23319541SRR23319542SRR23319543SRR23319544SRR23319545SRR23319546SRR23319547SRR23319548SRR23319549SRR23319550SRR23319552SRR23319553SRR23319554SRR23319555SRR23319556SRR23319557SRR23319558SRR23319559SRR23319560SRR23319561SRR23319562SRR23319563SRR23319564SRR23319565SRR23319566SRR23319567SRR23319568SRR23319569SRR23319570SRR23319571SRR23319572SRR23319573SRR23319574SRR23319575SRR23319576SRR23319577SRR23319578SRR23319579SRR23319580SRR23319581SRR23319582SRR23319583SRR23319584SRR23319585SRR23319586SRR23319587SRR23319588SRR23319589SRR23319590SRR23319591SRR23319593SRR23319595SRR23319596SRR23319597SRR23319598SRR23319599SRR23319600SRR23319601SRR23319602SRR23319603SRR23319604SRR23319605SRR23319606SRR23319607SRR23319608SRR23319609SRR23319610SRR23319611SRR23319612
SP102Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;flavescens04126251750113921722905264590019011370773290715615631591560030193200341613370203600127278816187328901788608004333625203240626036482797293069785323591751430678042672890110494370246507019631027192828
SP105Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;perflava3451829899959475150165823563018393786083182019144088396675231430959724645613793157212813930296814014336339840237688351313337858043147436919825441156901412539365101021249171597949644618656401215100205893150826270139151587573184731590745311191014113421642016533514400811685267247129298619536166998426792243360877697968088273859467765845895207
SP125Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT91404120049000000710000000000000000000240000000000000000000010917000000000000430140000000000000000019
SP129Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT218013000635147042433039815236702080029738206820102201116291200329000031415300096570000015450332475046111818530017540438220011510026521800033423472891001950330001050118200001895158
SP138Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;parainfluenzae72312041511616260350146222692752643160163248612397915051152127094167232630271475356282761224314895418362542540916559877926422409859549345438864971669410378623455098199448804260862282324211131726358438891258139139693567208531726573457109575830002466196813466741251570364818639142094131771183186536183907120112405938128515471056
SP148Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp. HMT2780029005800000006300009600710000032000000000000000000000000000000000000015900000000002600004800000
SP164Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;rava00000000000000043000002115150092003100000900000000003900870000880840000000000039717600040000711600030150650
SP169Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;elegans027830765689730656940611421581821855149477265978348360475254533589248113370121799225479740711794312213901280891896438191973981363960230358358454744121544843104444582782356834113770886872632098333694749211459160131802094018292142708507517
SP206Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;histicola334530783240087132133394568012077168420402305937116342380937562471872331439326316351001702380189092211773181276731187495272435631491928418540334357701581393170321480994239128610962670167722522186664671154276311176765681053325460611265800730985250716453612857978901097795
SP208Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Schaalia;sp. HMT172054415839315111307283370583029801610029001101056571313020243704237012939217319406844739114810772511170024702671133013293301477320139990334382733857654369353313229526803594141753649183101213834252307278170827682882393008903112095007364330030
SP219Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT2150170027000000000000000003100000400430208021102502600001000000029003300019000000126000020000170000000460
SP23Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;mucilaginosa815209955836944615441301861193932509353850171964302010241179034837408342765526300536148543677413329585226956093046317804641865460149790671316740251043615441108885704677659753174114419810621732573612348163030441106104262842476858597889754467794250623914791035757922370475931142087220486405064291947661086055173195585916913996643635526043126407319348582882203
SP233Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT306237129050700228031482602440201422466901031002104001901836256020579048018819212700560011212437006436833095946945321192110652560110101036568224990382043436432939351312208417811074902010270421001176550
SP235Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Ralstonia;pickettii6536417729928419324133230450276082408812506216821676317354781342080177735190620252114456914273554077916645295074686517511650965776613913781991080123140284712678122721990121655350201880113443216891143211129151477
SP243Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Schaalia;sp. HMT180063017171890241410891987344903228373237981642114011432179571360527020721380308110591521337172616111882803963414251845913396011732947004153647731371693007539183646966619589951233573126115312482617011088428102472711943331016016612411072074432959462183306563
SP25Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sputigena790013200000986000011070055076170000000004100000060000011080000330000002203300280001811000000610000000110
SP255Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;jejuni72938482324002330206066910988800248289011749024502541344962245347032341702820020445424159370014412819783105439315187980016231101060015278347296101454026010711872119067228329111150274290152344209434604570
SP27Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;melaninogenica5550771272286620237371647191713361411290948152024012492438181597219561678384345971237364462399032057227313611328112478405513901468604103162137195774910541548595925429452033340868082630199846375199325107131084443190352923221432265218375501204631717661511252786212358669501714251459069493667114212001033190115701062237137232647
SP270Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Lancefieldella;parvula2391789563137625534870186264664146147226184410126732031755360106378409543163214109504083473190860145355671223718920317529298044754631021163862292323767164903383148105471691302401984775092710829381712119222390742208893618261581
SP28Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;nanceiensis4311963627371259320537169453533269724436803111954802277594773210708464507095311400244290313039241032569026219235933250253710213796977561031821357371237190343342051192397777988168308265561427304439028817034996100915136722965952146470150884325251810446302
SP281Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Lautropia;mirabilis048588316151534221633077021990109850078039714183637703278118800642940032600346743743701271225314395171174171236131352387900641001672371508183001396331110413142255463327338040464871420223500140332866
SP33Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT21200250038108106490000203000870068002050008000000210000018000015002100000000000000013000000900000005000000
SP338Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;pallens4391292002910338381001328436000081516049921902516167602393810012653344351017219504860370667809435384971983790519016116457808903526729802985000008196140041016327111862340262183054211917925705290
SP36Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;subflava0062106510252462611290071033698000000000843100005000205000097000011317700000021329000011002723780002395037000180036084090000112006402975
SP369Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-2];bacterium HMT09685719011167770572504914449953601619283773511450147791748413842696277038101074904871027857702390117601106861591901798291088189140196082204150311283184135887197591352225730125304678051658587550420350450224
SP370Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT3520942283930862754517101619793588426401100280547955321855852309234740615820457725833225876205712495613406003903734162002891505666121601143173142714434657936754316862100456181936203786304338194517173195749396480434241292444637722146108398136654268040032763522902042
SP371Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;concisus45063411632231411172205111558446427439311896521796180401213740264602184346105145415254201625184360422351121196511342176184300278210261390238853181105376270260223346266134203881154947617811969223268518517604165717484344105035033534490232262360821036342281
SP382Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Pseudoleptotrichia;sp. HMT2214962010203880185520811483944000154267043802330166801144469387460139173214508032708355408010450389569501951517125880149234217047419804260018704660315420674550925952371363071046376527941019763134059172305296866
SP393Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT0743615771438131602992512188109946646112838702173401524874772544409571688301384525683597325114332487146518817761451520558475531710849476522751420124867783847201364167974236100057311171749032447311770624526391924175364581020301216501511222451300765256934807385210748
SP43Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sanguinis06074237052494741349868103633998423232220718685107215721441302108484715248096721392512678132037236369611873180836177137926230272181891981711497018336687919524306128310033381254156261881604563951708107863160128516111537148043313266969452126194187287
SP44Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;salivae122464615535835406113521364227690255134606007915543676521655271964134418832022915088533744345223405598218826887243922361733302351684481541531652668612031938315621657753658121253601501862566861643651071802033024470532155351153156286167222693183
SP45Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;dispar8032835573307164274710862645340111319496910387699313110391294026848784562381265570461111454631420750301318894691158875056499679672166648759885121459583361103411161578963065681856353085697769414599716318092731766737317151391451618311473849984505267698038306102224238623557411141227701727863827583780259791218667511239676253234209080954051801042577719382382571586443
SP46Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-6];bacterium HMT8700881785418132231149704704650465510114258818156025440034504350108152064323568220001667107045730158003800785810575486206571164806910460001240011622028604054330318377141262008191240238621
SP47Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;haemolysans263101543631414315522842380360557662041389328327231631428923278610842679127537141674109744233353351890114936025831124264741187022152011233728022982143151484179296645922312392211254128825626741534314946366936488115984740143264322116150878108807616142781119316148181123441430111270768537729846086695749631795
SP50Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;atypica110244703269525275358973734814917173734541960342426197814763684032425705858996633552856550457951401419529833007112332861300104062761374640823883877221292391128436942907206415556765253355445166388525681765412382518232282155813113275147928511096231610493542976155943595649127648815246251519336535467807064178119532736159112391577284828582286
SP51Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;sanguinis2218021152281723521112153310973621009394833642746162581630822150011004105909941136182356893739398855151379828818537930323630400257831966534599815744921640187281223131113585161173320827736367436101562838897405437344139516610373732502366640199551923221611406131395516971623418254703992
SP53Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT41771101496013732011322016372058958259084904302641134645522266455825688122278912241933671079501417753411649909360100330023557119231955022874692332475872387111106561615046123610441032904156890782425136729371253487292788108517649407244543494450955326792561118
SP74Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;adiacens539174077689758152455135012791035169984683278082315815691982136790434348521674567193493182780334861172252523741776701104231502698157912751308186313866807683135307112233378813447817991617105865025361266177943031606866102149516861205575977173993051214712166197621102329117390026762591397122686713363104183291619031994
SP84Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;graevenitzii053309480004900000000002534704670135500013220010970007700017210571306000499820048490125355438001013035200002520004098119200626037981106000014470600257134000
SP86Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;parasanguinis_clade_4111658491326186036103132841695951160672509691743733146888027611588174415771433201811909645271441488344684823059629679137014315578795935603275134349261372150636716453792581303210520712791197223111584366749442982761358206327759107344953212491486439776714254766843487202924447201183205916102323001350
SP87Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;periodonticum10928541337149912821219244213395469061479461137467141235312317651092178496355177641743001489808110357302117792022991310978613148251713979659431369385315234109262935943551837029066244905665628341352496561947456043423676817021551807226507163863971417263529352588172971730238810065451399
SP88Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;pasteri1656619041029292658336819734961884105612253682613734125261061132275638873310771830185485931178119384322301378511139506062471108059133315111648728203828241063792150657599404145943271243298214052308196594635054267310721774417186126657824379032113472113572450243433181207226420663582209516730659
SP97Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT30893921187570212002763367838760666234198802197102594148143407147439114971037323335755089114981184178251615236239289673490146221475407117616117231764034300116832212311112231218821725521352158391113311772420918142981255384083819115891414825031231458351
SPN100Bacteria;Tenericutes;Mollicutes;Mollicutes_[O-2];Mollicutes_[F-2];Mollicutes_[G-2];bacterium_MOT-188_nov_86.079%061089158001490110000000000000000001813000105000000000000000000000000000702300000000000000400000000
SPN112Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Megasphaera;micronuciformis_nov_100.000%196426120413400941944561215884943203281461307510223860369153110435421632017158289646787189366548205414753773842633183912440058768959811284131387101166071742186482304991471492683181259108437315295365661165118220958623347536022579905346514418523636977679900417
SPN124Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;sp. HMT908 nov_100.000%00000049400000000000000175700000140000001100001200000000280000000000015000340000000042140023000001800
SPN133Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;rogosae_nov_99.768%000017200000051000012400000000000000000000000000000000037000000000000105001070000000000000000000176
SPN144Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;sp. HMT917 nov_99.536%00000000000000094000000000000000000000002800000000548088000000000000000000000000000000000000
SPN151Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;shahii_nov_99.022%0000040000146000001201516200000027250017250300057000000000153200000033028293200008901900000007102700045470047092091
SPN155Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT392 nov_99.022%030130410623000001412141500003001100212001810802000009007301003000000120110005190030008000006010000911210601641
SPN166Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;mucilaginosa_nov_99.515%17032290006111281832033140014080761350363069156500001715000412538650000006380015690916049425060000193701305000195301490023803200020060000611443002100005282000000
SPN173Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Tannerella;sp. HMT286 nov_100.000%10471202126111905091160007060351512103045012016271039010003019016171512610064053096240110005068314014419001170140019141411252859852
SPN176Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;concisus_nov_99.754%000001400000058019100042000000000000000040001506500000000181000012200000000000002751140000000012600035000
SPN18Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Pseudoleptotrichia;goodfellowii_nov_94.621%0000157000000000000852000000000000000000000000000000000000000000000000000000000000000000000
SPN183Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;sp. HMT513 nov_100.000%07300056426005062500600047001505200130905090000001103045130015152300350000030706403471500040230000007014023200
SPN194Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;endodontalis_nov_99.532%0120006250050000700016460400000000000290000000000000000000202140000000000000042000000001500147500000
SPN216Bacteria;Firmicutes;Clostridia;Eubacteriales;Ruminococcaceae;Ruminococcaceae_[G-1];bacterium HMT075 nov_94.568%000011002330000000001049300000000000000000000000010900000000000000009000050001600000000000000000017
SPN27Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;vincentii_nov_99.072%0576261383701466303000606023040630323041003006000039460040160000601271402701838090500100028700000015235885210012
SPN36Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT863 nov_99.532%076051140002340901804001487716014001617180150011000000363302008040039021350053306220376061936001201569004757230722041
SPN47Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus;acetotolerans_nov_100.000%03128221332461914230000000000000000000000000000003940580435180160003223502716263710161900036500000006200000000005749
SPN57Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;granulosa_nov_92.037%013440140037000000330020110000242300110000000000000000026000045007210960000210000880000000240060002850010021
SPN67Bacteria;Actinobacteria;Actinomycetia;Bifidobacteriales;Bifidobacteriaceae;Scardovia;wiggsiae_nov_100.000%1300000002000000007030650021040000000082700900013280020005080580000003507171002187171085540213000017001928
SPN78Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT396 nov_98.357%03400010224532001290660000000027005515110111806114000001233069000600870461266030918020000151800221222001700026110390514
SPN88Bacteria;Cyanobacteria;Oscillatoriophycideae;Oscillatoriales;Microcoleaceae;Arthrospira;platensis_nov_86.199%0002217002001570000000000000000000000030092514790000000000000000000021800000000000000000000000000
SPN9Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Dialister;invisus_nov_100.000%9917041414303212000000645002301416005060773027001700140250104150100165912562450210050090117031301440000604807323184483
SPN91Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Schaalia;sp. HMT172 nov_99.764%1214359733734889443677360853419596891209140924765965213877418494094541055121715584723365672722287493493003155023643234460106766915261595105260139882771729134043210816104715776381171868315205416751254375114312981414701384686150129624652530325351988148016321282056564968431348087224925131441322927353168
SPP12Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp12_1805600087374254240118780106780000161449161050316920730940168104796595618381540009892001090000000002855815501538301033325914550154111748261000022600300532011040280468000421036
SPP20Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp20_2174058961846049764313828302618493898610219459511662213485815037820062391028537161694748146500677151184986274548892454135256148111325442356126210109166781532632161328682075518441260307130922870352855376042795853123460623513847425637485409550271316421438554073735436195680624936497112971243813576097602150117320289188721172416281286824191866374149547673
SPP46Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;multispecies_spp46_41389976612511226790162982019290292511213515510581255768123771633436801999132742021181206734914510432510159028870303422210463642217322335064674351564812879503046082231648101041081641528318666452808621299019786651503167347410091678135023988501985156269318130494121521237663
SPP48Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp48_3160129752958714508024189170158898897212778325848841166169218341118733207126438911371082635093548913495261010495421961301103302043094625314122118542818330417431923810610125936018467311456411613623045834424323697247017875029786204869164614267206588875458
SPP52Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp52_222122223017917130720645888216229150100473278240283931681651961381473013741306180203339544275418207203112414373431925452942282384347494002888916621321039114864110424558112022043128954138826726961419811410835321020422613717113117611523344198533745526184391272
SPP60Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp60_17104366556950390721307318169101081308932061541125373508253718791847725714095164366778139471014717881709059818197148402632870610502162956628121512789666684607872744331831160811671153403260418917295123524798101974823422971756123117334410909242873954611414483385611068454119221144454367244019533279048244373381610768248942647589230963915456169375198006218613727750365246967599010675
SPP8Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;multispecies_spp8_371021196577172713193448284499182922644917394720447233201510873681276766433033921345459021766611355000379236063268451112373690171015257249541124050524764506072072311415042534119606435529750493266107220637226769712
SPPN1Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_sppn1_2_nov_97.555%00000000000001200021413000000130015180000000000000000000000001600900000000610220000000000179000003112710
SPPN14Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;multispecies_sppn14_2_nov_99.304%012755000210178000210000003460000600072000002400028581001400000060423000002300005000000090134211400180008018019
SPPN21Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;multispecies_sppn21_2_nov_100.000%1230018743830260000071119370021400500341910907400161260216040060000125600040221205123800140005070241279018021035
SPPN35Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;multispecies_sppn35_3_nov_100.000%0050200182303600052000000822337400000071390017030002011019349000000150220003903180051000080500050205048256997153
SPPN5Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;multispecies_sppn5_4_nov_99.536%001425008928170650177922123391753591135101288790265105563800624194677927143341174422460574026420589296463635050703854067002666154116916113055003598804015159002913020342830002261189008588366630331892221386432
 
 
Download OTU Tables at Different Taxonomy Levels
PhylumCount*: Relative**: CLR***:
ClassCount*: Relative**: CLR***:
OrderCount*: Relative**: CLR***:
FamilyCount*: Relative**: CLR***:
GenusCount*: Relative**: CLR***:
SpeciesCount*: Relative**: CLR***:
* Read count
** Relative abundance (count/total sample count)
*** Centered log ratio transformed abundance
;
 
The species listed in the table has full taxonomy and a dynamically assigned species ID specific to this report. When some reads match with the reference sequences of more than one species equally (i.e., same percent identiy and alignmnet coverage), they can't be assigned to a particular species. Instead, they are assigned to multiple species with the species notaton "s__multispecies_spp2_2". In this notation, spp2 is the dynamic ID assigned to these reads that hit multiple sequences and the "_2" at the end of the notation means there are two species in the spp2.

You can look up which species are included in the multi-species assignment, in this table below:
 
 
 
 
Another type of notation is "s__multispecies_sppn2_2", in which the "n" in the sppn2 means it's a potential novel species because all the reads in this species have < 98% idenity to any of the reference sequences. They were grouped together based on de novo OTU clustering at 98% identity cutoff. And then a representative sequence was chosed to BLASTN search against the reference database to find the closest match (but will still be < 98%). This representative sequence also matched equally to more than one species, hence the "spp" was given in the label.
 
 

Taxonomy Bar Plots for All Samples

 
 

Taxonomy Bar Plots for Individual Comparison Groups

 
 
Comparison No.Comparison NameFamiliesGeneraSpecies
Comparison 1HighCA vs LowCA vs MediumCAPDFSVGPDFSVGPDFSVG
 
 

VIII. Analysis - Alpha Diversity

 

In ecology, alpha diversity (α-diversity) is the mean species diversity in sites or habitats at a local scale. The term was introduced by R. H. Whittaker[5][6] together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites or habitats at a more local scale (alpha diversity) and the differentiation among those habitats (beta diversity).

 

References:

  1. Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338. doi:10.2307/1943563
  2. Whittaker, R. H. (1972). Evolution and Measurement of Species Diversity. Taxon, 21, 213-251. doi:10.2307/1218190

 

Alpha Diversity Analysis by Rarefaction

Diversity measures are affected by the sampling depth. Rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples. Rarefaction curves generally grow rapidly at first, as the most common species are found, but the curves plateau as only the rarest species remain to be sampled [7].


References:

  1. Willis AD. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol. 2019 Oct 23;10:2407. doi: 10.3389/fmicb.2019.02407. PMID: 31708888; PMCID: PMC6819366.

 
 
 

Boxplot of Alpha-diversity Indices

The two main factors taken into account when measuring diversity are richness and evenness. Richness is a measure of the number of different kinds of organisms present in a particular area. Evenness compares the similarity of the population size of each of the species present. There are many different ways to measure the richness and evenness. These measurements are called "estimators" or "indices". Below is a diversity of 3 commonly used indices showing the values for all the samples (dots) and in groups (boxes).

Printed on each graph is the statistical significance p values of the difference between the groups. The significance is calculated using either Kruskal-Wallis test or the Wilcoxon rank sum test, both are non-parametric methods (since microbiome read count data are considered non-normally distributed) for testing whether samples originate from the same distribution (i.e., no difference between groups). The Kruskal-Wallis test is used to compare three or more independent groups to determine if there are statistically significant differences between their medians. The Wilcoxon Rank Sum test, also known as the Mann-Whitney U test, is used to compare two independent groups to determine if there is a significant difference between their distributions.
The p-value is shown on the top of each graph. A p-value < 0.05 is considered statistically significant between/among the test groups.

 
Alpha Diversity Box Plots for All Groups
 
 
 
 
 
 
 
Alpha Diversity Box Plots for Individual Comparisons at Species level
 
Comparison 1HighCA vs LowCA vs MediumCAView in PDFView in SVG
 
The above comparisons are at the species-level. Comparisons of other taxonomy levels, from phylum to genus, are also available:
 
 
 
 

Group Significance Evaluation of Alpha-diversity Indices with QIIME2

The above comparisons and significance tests were done under the R environment. For compasison (also because this was included in the pipeline early on) we also use the Kruskal Wallis H test provided the "alpha-group-significance" fucntion in the QIIME 2 "diversity" package. As mentioned above, Kruskal Wallis test is the non-parametric alternative to the One Way ANOVA. Non-parametric means that the test doesn’t assume your data comes from a particular distribution. The H test is used when the assumptions for ANOVA aren’t met (assumption of normality). It is sometimes called the one-way ANOVA on ranks, as the ranks of the data values are used in the test rather than the actual data points. The H test determines whether the medians of two or more groups are different.

Below are the Kruskal Wallis H test results for each comparison based on three different alpha diversity measures: 1) Observed species (features), 2) Shannon index, and 3) Simpson index.

 
 
Comparison 1.HighCA vs LowCA vs MediumCAObserved FeaturesShannon IndexSimpson Index
 
 

IX. Analysis - Beta Diversity

 

NMDS and PCoA Plots

Beta diversity compares the similarity (or dissimilarity) of microbial profiles between different groups of samples. There are many different similarity/dissimilarity metrics [8]. In general, they can be quantitative (using sequence abundance, e.g., Bray-Curtis or weighted UniFrac) or binary (considering only presence-absence of sequences, e.g., binary Jaccard or unweighted UniFrac). They can be even based on phylogeny (e.g., UniFrac metrics) or not (non-UniFrac metrics, such as Bray-Curtis, etc.).

For microbiome studies, species profiles of samples can be compared with the Bray-Curtis dissimilarity, which is based on the count data type. The pair-wise Bray-Curtis dissimilarity matrix of all samples can then be subject to either multi-dimensional scaling (MDS, also known as PCoA) or non-metric MDS (NMDS).

MDS/PCoA is a scaling or ordination method that starts with a matrix of similarities or dissimilarities between a set of samples and aims to produce a low-dimensional graphical plot of the data in such a way that distances between points in the plot are close to original dissimilarities.

NMDS is similar to MDS, however it does not use the dissimilarities data, instead it converts them into the ranks and use these ranks in the calculation.

In our beta diversity analysis, Bray-Curtis dissimilarity matrix was first calculated and then plotted by the PCoA and NMDS separately. Below are beta diveristy results for all groups together:

References:

  1. Plantinga, AM, Wu, MC (2021). Beta Diversity and Distance-Based Analysis of Microbiome Data. In: Datta, S., Guha, S. (eds) Statistical Analysis of Microbiome Data. Frontiers in Probability and the Statistical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-73351-3_5

 
 
NMDS and PCoA Plots for All Groups
 
 
 
 
 

The above PCoA and NMDS plots are based on count data. The count data can also be transformed into centered log ratio (CLR) for each species. The CLR data is no longer count data and cannot be used in Bray-Curtis dissimilarity calculation. Instead CLR can be compared with Euclidean distances. When CLR data are compared by Euclidean distance, the distance is also called Aitchison distance.

Below are the NMDS and PCoA plots of the Aitchison distances of the samples:

 
 
 
 
 
 
 
NMDS and PCoA Plots for Individual Comparisons at Species level
 
 
Comparison No.Comparison NameNMDAPCoA
Bray-CurtisCLR EuclideanBray-CurtisCLR Euclidean
Comparison 1HighCA vs LowCA vs MediumCAPDFSVGPDFSVGPDFSVGPDFSVG
 
 
 
 
 
 

Interactive 3D PCoA Plots - Bray-Curtis Dissimilarity

 
 
 

Interactive 3D PCoA Plots - Euclidean Distance

 
 
 

Interactive 3D PCoA Plots - Correlation Coefficients

 
 
 

Group Significance of Beta-diversity Indices

To test whether the between-group dissimilarities are significantly greater than the within-group dissimilarities, the "beta-group-significance" function provided in the QIIME 2 "diversity" package was used with PERMANOVA (permutational multivariate analysis of variance) as the group significant testing method.

Three beta diversity matrics were used: 1) Bray–Curtis dissimilarity 2) Correlation coefficient matrix , and 3) Aitchison distance (Euclidean distance between clr-transformed compositions).

 
 
Comparison 1.HighCA vs LowCA vs MediumCABray–CurtisCorrelationAitchison
 
 
 

X. Analysis - Differential Abundance

16S rRNA next generation sequencing (NGS) generates a fixed number of reads that reflect the proportion of different species in a sample, i.e., the relative abundance of species, instead of the absolute abundance. In Mathematics, measurements involving probabilities, proportions, percentages, and ppm can all be thought of as compositional data. This makes the microbiome read count data “compositional” (Gloor et al, 2017). In general, compositional data represent parts of a whole which only carry relative information [9].

The problem of microbiome data being compositional arises when comparing two groups of samples for identifying “differentially abundant” species. A species with the same absolute abundance between two conditions, its relative abundances in the two conditions (e.g., percent abundance) can become different if the relative abundance of other species change greatly. This problem can lead to incorrect conclusion in terms of differential abundance for microbial species in the samples.

When studying differential abundance (DA), the current better approach is to transform the read count data into log ratio data. The ratios are calculated between read counts of all species in a sample to a “reference” count (e.g., mean read count of the sample). The log ratio data allow the detection of DA species without being affected by percentage bias mentioned above

In this report, a compositional DA analysis tool “ANCOM” (analysis of composition of microbiomes) was used [10]. ANCOM transforms the count data into log-ratios and thus is more suitable for comparing the composition of microbiomes in two or more populations. "ANCOM" generates a table of features with W-statistics and whether the null hypothesis is rejected. The “W” is the W-statistic, or number of features that a single feature is tested to be significantly different against. Hence the higher the "W" the more statistical sifgnificant that a feature/species is differentially abundant.

References:

  1. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017 Nov 15;8:2224. doi: 10.3389/fmicb.2017.02224. PMID: 29187837; PMCID: PMC5695134.
  2. Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015 May 29;26:27663. doi: 10.3402/mehd.v26.27663. PMID: 26028277; PMCID: PMC4450248.
 
 

ANCOM Differential Abundance Analysis

 
ANCOM Results for Individual Comparisons
Comparison No.Comparison Name
Comparison 1.HighCA vs LowCA vs MediumCA
 
 

ANCOM-BC2 Differential Abundance Analysis

 

Starting with version V1.2, we include the results of ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) (Lin and Peddada 2020) [11]. ANCOM-BC is an updated version of "ANCOM" that:
(a) provides statistically valid test with appropriate p-values,
(b) provides confidence intervals for differential abundance of each taxon,
(c) controls the False Discovery Rate (FDR),
(d) maintains adequate power, and
(e) is computationally simple to implement.

The bias correction (BC) addresses a challenging problem of the bias introduced by differences in the sampling fractions across samples. This bias has been a major hurdle in performing DA analysis of microbiome data. ANCOM-BC estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework.

Starting with version V1.43, ANCOM-BC2 is used instead of ANCOM-BC, So that multiple pairwise directional test can be performed (if there are more than two gorups in a comparison). When performing pairwise directional test, the mixed directional false discover rate (mdFDR) is taken into account. The mdFDR is the combination of false discovery rate due to multiple testing, multiple pairwise comparisons, and directional tests within each pairwise comparison. The mdFDR is adopted from (Guo, Sarkar, and Peddada 2010 [12]; Grandhi, Guo, and Peddada 2016 [13]). For more detail explanation and additional features of ANCOM-BC2 please see author's documentation.

References:

  1. Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.
  2. Guo W, Sarkar SK, Peddada SD. Controlling false discoveries in multidimensional directional decisions, with applications to gene expression data on ordered categories. Biometrics. 2010 Jun;66(2):485-92. doi: 10.1111/j.1541-0420.2009.01292.x. Epub 2009 Jul 23. PMID: 19645703; PMCID: PMC2895927.
  3. Grandhi A, Guo W, Peddada SD. A multiple testing procedure for multi-dimensional pairwise comparisons with application to gene expression studies. BMC Bioinformatics. 2016 Feb 25;17:104. doi: 10.1186/s12859-016-0937-5. PMID: 26917217; PMCID: PMC4768411.
 
 
ANCOM-BC Results for Individual Comparisons
 
Comparison No.Comparison Name
Comparison 1.HighCA vs LowCA vs MediumCA
 
 
 
 
 

LEfSe - Linear Discriminant Analysis Effect Size

LEfSe (Linear Discriminant Analysis Effect Size) is an alternative method to find "organisms, genes, or pathways that consistently explain the differences between two or more microbial communities" (Segata et al., 2011) [14]. Specifically, LEfSe uses rank-based Kruskal-Wallis (KW) sum-rank test to detect features with significant differential (relative) abundance with respect to the class of interest. Since it is rank-based, instead of proportional based, the differential species identified among the comparison groups is less biased (than percent abundance based).

Reference:

  1. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011 Jun 24;12(6):R60. doi: 10.1186/gb-2011-12-6-r60. PMID: 21702898; PMCID: PMC3218848.
 
HighCA vs LowCA vs MediumCA
 
 
 
 
 
 
 

XI. Analysis - Heatmap Profile

 

Species vs Sample Abundance Heatmap for All Samples

 
 
 

Heatmaps for Individual Comparisons

 
A) Two-way clustering - clustered on both columns (Samples) and rows (organism)
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1HighCA vs LowCA vs MediumCAPDFSVGPDFSVGPDFSVG
 
 
B) One-way clustering - clustered on rows (organism) only
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1HighCA vs LowCA vs MediumCAPDFSVGPDFSVGPDFSVG
 
 
C) No clustering
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1HighCA vs LowCA vs MediumCAPDFSVGPDFSVGPDFSVG
 
 

XII. Analysis - Network Association

To analyze the co-occurrence or co-exclusion between microbial species among different samples, network correlation analysis tools are usually used for this purpose. However, microbiome count data are compositional. If count data are normalized to the total number of counts in the sample, the data become not independent and traditional statistical metrics (e.g., correlation) for the detection of specie-species relationships can lead to spurious results. In addition, sequencing-based studies typically measure hundreds of OTUs (species) on few samples; thus, inference of OTU-OTU association networks is severely under-powered. Here we use SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues (Kurtz et al., 2015) [15]. SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. SPIEC-EASI provides two algorithms for network inferencing – 1) Meinshausen-Bühlmann's neighborhood selection (MB method) and inverse covariance selection (GLASSO method, i.e., graphical least absolute shrinkage and selection operator). This is fundamentally distinct from SparCC, which essentially estimate pairwise correlations. In addition to these two methods, we provide the results of a third method - SparCC (Sparse Correlations for Compositional Data)(Friedman & Alm 2012)[16], which is also a method for inferring correlations from compositional data. SparCC estimates the linear Pearson correlations between the log-transformed components.

References:

  1. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015 May 7;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226. PMID: 25950956; PMCID: PMC4423992.
  2. Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20. PMID: 23028285; PMCID: PMC3447976.
 

SPIEC-EASI Network Inference by Neighborhood Selection (MB Method)

 

 

 

Association Network Inference by SparCC

 

 

 
 

XIII. Disclaimer

The results of this analysis are for research purpose only. They are not intended to diagnose, treat, cure, or prevent any disease. Forsyth and FOMC are not responsible for use of information provided in this report outside the research area.

 

Copyright FOMC 2025