FOMC Service Report

16S rRNA Gene V3V4 Amplicon Sequencing

Version V1.50

Version History

The Forsyth Institute, Cambridge, MA, USA
June 23, 2025

Project ID: cmdi_PRJNA643173


I. Project Summary

Project cmdi_PRJNA643173 services include NGS sequencing of the V4V4 region of the 16S rRNA gene amplicons from the samples. First and foremost, please download this report, as well as the sequence raw data from the download links provided below. These links will expire after 60 days. We cannot guarantee the availability of your data after 60 days.

Full Bioinformatics analysis service was requested. We provide many analyses, starting from the raw sequence quality and noise filtering, pair reads merging, as well as chimera filtering for the sequences, using the DADA2 denosing algorithm and pipeline.

We also provide many downstream analyses such as taxonomy assignment, alpha and beta diversity analyses, and differential abundance analysis.

For taxonomy assignment, most informative would be the taxonomy barplots. We provide an interactive barplots to show the relative abundance of microbes at different taxonomy levels (from Phylum to species) that you can choose.

If you specify which groups of samples you want to compare for differential abundance, we provide both ANCOM and LEfSe differential abundance analysis.

 

II. Workflow Checklist

1.Sample Received
2.Sample Quality Evaluated
3.Sample Prepared for Sequencing
4.Next-Gen Sequencing
5.Sequence Quality Check
6.Absolute Abundance
7.Report and Raw Sequence Data Available for Download
8.Bioinformatics Analysis - Reads Processing (DADA2 Quality Trimming, Denoising, Paired Reads Merging)
9.Bioinformatics Analysis - Reads Taxonomy Assignment
10.Bioinformatics Analysis - Alpha Diversity Analysis
11.Bioinformatics Analysis - Beta Diversity Analysis
12.Bioinformatics Analysis - Differential Abundance Analysis
13.Bioinformatics Analysis - Heatmap Profile
14.Bioinformatics Analysis - Network Association
 

III. NGS Sequencing

The samples were processed and analyzed with the ZymoBIOMICS® Service: Targeted Metagenomic Sequencing (Zymo Research, Irvine, CA).

DNA Extraction: If DNA extraction was performed, one of three different DNA extraction kits was used depending on the sample type and sample volume and were used according to the manufacturer’s instructions, unless otherwise stated. The kit used in this project is marked below:

ZymoBIOMICS®-96 MagBead DNA Kit (Zymo Research, Irvine, CA)
N/A (DNA Extraction Not Performed)
Elution Volume: 50µL
Additional Notes: NA

Targeted Library Preparation: The DNA samples were prepared for targeted sequencing with the Quick-16S™ NGS Library Prep Kit (Zymo Research, Irvine, CA). These primers were custom designed by Zymo Research to provide the best coverage of the 16S gene while maintaining high sensitivity. The primer sets used in this project are marked below:

Quick-16S™ Primer Set V1-V2 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V1-V3 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V3-V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V6-V8 (Zymo Research, Irvine, CA)
Other: NA
Additional Notes: NA

The sequencing library was prepared using an innovative library preparation process in which PCR reactions were performed in real-time PCR machines to control cycles and therefore limit PCR chimera formation. The final PCR products were quantified with qPCR fluorescence readings and pooled together based on equal molarity. The final pooled library was cleaned up with the Select-a-Size DNA Clean & Concentrator™ (Zymo Research, Irvine, CA), then quantified with TapeStation® (Agilent Technologies, Santa Clara, CA) and Qubit® (Thermo Fisher Scientific, Waltham, WA).

Control Samples: The ZymoBIOMICS® Microbial Community Standard (Zymo Research, Irvine, CA) was used as a positive control for each DNA extraction, if performed. The ZymoBIOMICS® Microbial Community DNA Standard (Zymo Research, Irvine, CA) was used as a positive control for each targeted library preparation. Negative controls (i.e. blank extraction control, blank library preparation control) were included to assess the level of bioburden carried by the wet-lab process.

Sequencing: The final library was sequenced on Illumina® MiSeq™ with a V3 reagent kit (600 cycles). The sequencing was performed with 10% PhiX spike-in.

Absolute Abundance Quantification*: A quantitative real-time PCR was set up with a standard curve. The standard curve was made with plasmid DNA containing one copy of the 16S gene and one copy of the fungal ITS2 region prepared in 10-fold serial dilutions. The primers used were the same as those used in Targeted Library Preparation. The equation generated by the plasmid DNA standard curve was used to calculate the number of gene copies in the reaction for each sample. The PCR input volume (2 µl) was used to calculate the number of gene copies per microliter in each DNA sample.
The number of genome copies per microliter DNA sample was calculated by dividing the gene copy number by an assumed number of gene copies per genome. The value used for 16S copies per genome is 4. The value used for ITS copies per genome is 200. The amount of DNA per microliter DNA sample was calculated using an assumed genome size of 4.64 x 106 bp, the genome size of Escherichia coli, for 16S samples, or an assumed genome size of 1.20 x 107 bp, the genome size of Saccharomyces cerevisiae, for ITS samples. This calculation is shown below:

Calculated Total DNA = Calculated Total Genome Copies × Assumed Genome Size (4.64 × 106 bp) ×
Average Molecular Weight of a DNA bp (660 g/mole/bp) ÷ Avogadro’s Number (6.022 x 1023/mole)


* Absolute Abundance Quantification is only available for 16S and ITS analyses.

The absolute abundance standard curve data can be viewed in Excel here:

The absolute abundance standard curve is shown below:

Absolute Abundance Standard Curve

 

IV. Complete Report Download

The complete report of your project, including all links in this report, can be downloaded by clicking the link provided below. The downloaded file is a compressed ZIP file and once unzipped, open the file “REPORT.html” (may only shown as "REPORT" in your computer) by double clicking it. Your default web browser will open it and you will see the exact content of this report.

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Complete report download link:

To view the report, please follow the following steps:

1.Download the .zip file from the report link above.
2.Extract all the contents of the downloaded .zip file to your desktop.
3.Open the extracted folder and find the "REPORT.html" (may shown as only "REPORT").
4.Open (double-clicking) the REPORT.html file. Your default browser will open the top age of the complete report. Within the report, there are links to view all the analyses performed for the project.

 

V. Raw Sequence Data Download

The raw NGS sequence data is available for download with the link provided below. The data is a compressed ZIP file and can be unzipped to individual sequence files. Since this is a pair-end sequencing, each of your samples is represented by two sequence files, one for READ 1, with the file extension “*_R1.fastq.gz”, another READ 2, with the file extension “*_R1.fastq.gz”. The files are in FASTQ format and are compressed. FASTQ format is a text-based data format for storing both a biological sequence and its corresponding quality scores. Most sequence analysis software will be able to open them. The Sample IDs associated with the R1 and R2 fastq files are listed in the table below:

SRR12117916Original Sample IDSRR12117916_R1.fastqSRR12117916_R2.fastq
SRR12117917SRR12117917_R1.fastqSRR12117917_R2.fastq
SRR12117918SRR12117918_R1.fastqSRR12117918_R2.fastq
SRR12117919SRR12117919_R1.fastqSRR12117919_R2.fastq
SRR12117920SRR12117920_R1.fastqSRR12117920_R2.fastq
SRR12117921SRR12117921_R1.fastqSRR12117921_R2.fastq
SRR12117922SRR12117922_R1.fastqSRR12117922_R2.fastq
SRR12117923SRR12117923_R1.fastqSRR12117923_R2.fastq
SRR12117924SRR12117924_R1.fastqSRR12117924_R2.fastq
SRR12117925SRR12117925_R1.fastqSRR12117925_R2.fastq
SRR12117926SRR12117926_R1.fastqSRR12117926_R2.fastq
SRR12117927SRR12117927_R1.fastqSRR12117927_R2.fastq
SRR12117928SRR12117928_R1.fastqSRR12117928_R2.fastq
SRR12117929SRR12117929_R1.fastqSRR12117929_R2.fastq
SRR12117930SRR12117930_R1.fastqSRR12117930_R2.fastq
SRR12117931SRR12117931_R1.fastqSRR12117931_R2.fastq
SRR12117932SRR12117932_R1.fastqSRR12117932_R2.fastq
SRR12117933SRR12117933_R1.fastqSRR12117933_R2.fastq
SRR12117934SRR12117934_R1.fastqSRR12117934_R2.fastq
SRR12117935SRR12117935_R1.fastqSRR12117935_R2.fastq
SRR12117936SRR12117936_R1.fastqSRR12117936_R2.fastq
SRR12117937SRR12117937_R1.fastqSRR12117937_R2.fastq
SRR12117938SRR12117938_R1.fastqSRR12117938_R2.fastq
SRR12117939SRR12117939_R1.fastqSRR12117939_R2.fastq
SRR12117940SRR12117940_R1.fastqSRR12117940_R2.fastq
SRR12117941SRR12117941_R1.fastqSRR12117941_R2.fastq
SRR12117942SRR12117942_R1.fastqSRR12117942_R2.fastq
SRR12117943SRR12117943_R1.fastqSRR12117943_R2.fastq
SRR12117944SRR12117944_R1.fastqSRR12117944_R2.fastq
SRR12117945SRR12117945_R1.fastqSRR12117945_R2.fastq
SRR12117946SRR12117946_R1.fastqSRR12117946_R2.fastq
SRR12117947SRR12117947_R1.fastqSRR12117947_R2.fastq
SRR12117948SRR12117948_R1.fastqSRR12117948_R2.fastq
SRR12117949SRR12117949_R1.fastqSRR12117949_R2.fastq
SRR12117950SRR12117950_R1.fastqSRR12117950_R2.fastq
SRR12117951SRR12117951_R1.fastqSRR12117951_R2.fastq
SRR12117952SRR12117952_R1.fastqSRR12117952_R2.fastq
SRR12117953SRR12117953_R1.fastqSRR12117953_R2.fastq
SRR12117954SRR12117954_R1.fastqSRR12117954_R2.fastq
SRR12117955SRR12117955_R1.fastqSRR12117955_R2.fastq
SRR12117956SRR12117956_R1.fastqSRR12117956_R2.fastq
SRR12117957SRR12117957_R1.fastqSRR12117957_R2.fastq

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Raw sequence data download link:

 

VI. Analysis - DADA2 Read Processing

What is DADA2?

DADA2 is a software package that models and corrects Illumina-sequenced amplicon errors [1]. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. DADA2 identified more real variants and output fewer spurious sequences than other methods.

DADA2’s advantage is that it uses more of the data. The DADA2 error model incorporates quality information, which is ignored by all other methods after filtering. The DADA2 error model incorporates quantitative abundances, whereas most other methods use abundance ranks if they use abundance at all. The DADA2 error model identifies the differences between sequences, eg. A->C, whereas other methods merely count the mismatches. DADA2 can parameterize its error model from the data itself, rather than relying on previous datasets that may or may not reflect the PCR and sequencing protocols used in your study.

DADA2 Software Package is available as an R package at : https://benjjneb.github.io/dada2/index.html

References

  1. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016 Jul;13(7):581-3. doi: 10.1038/nmeth.3869. Epub 2016 May 23. PMID: 27214047; PMCID: PMC4927377.

Analysis Procedures:

DADA2 pipeline includes several tools for read quality control, including quality filtering, trimming, denoising, pair merging and chimera filtering. Below are the major processing steps of DADA2:

Step 1. Read trimming based on sequence quality The quality of NGS Illumina sequences often decreases toward the end of the reads. DADA2 allows to trim off the poor quality read ends in order to improve the error model building and pair mergicing performance.

Step 2. Learn the Error Rates The DADA2 algorithm makes use of a parametric error model (err) and every amplicon dataset has a different set of error rates. The learnErrors method learns this error model from the data, by alternating estimation of the error rates and inference of sample composition until they converge on a jointly consistent solution. As in many machine-learning problems, the algorithm must begin with an initial guess, for which the maximum possible error rates in this data are used (the error rates if only the most abundant sequence is correct and all the rest are errors).

Step 3. Infer amplicon sequence variants (ASVs) based on the error model built in previous step. This step is also called sequence "denoising". The outcome of this step is a list of ASVs that are the equivalent of oligonucleotides.

Step 4. Merge paired reads. If the sequencing products are read pairs, DADA2 will merge the R1 and R2 ASVs into single sequences. Merging is performed by aligning the denoised forward reads with the reverse-complement of the corresponding denoised reverse reads, and then constructing the merged “contig” sequences. By default, merged sequences are only output if the forward and reverse reads overlap by at least 12 bases, and are identical to each other in the overlap region (but these conditions can be changed via function arguments).

Step 5. Remove chimera. The core dada method corrects substitution and indel errors, but chimeras remain. Fortunately, the accuracy of sequence variants after denoising makes identifying chimeric ASVs simpler than when dealing with fuzzy OTUs. Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a right-segment from two more abundant “parent” sequences. The frequency of chimeric sequences varies substantially from dataset to dataset, and depends on on factors including experimental procedures and sample complexity.

Results

1. Read Quality Plots NGS sequence analaysis starts with visualizing the quality of the sequencing. Below are the quality plots of the first sample for the R1 and R2 reads separately. In gray-scale is a heat map of the frequency of each quality score at each base position. The mean quality score at each position is shown by the green line, and the quartiles of the quality score distribution by the orange lines. The forward reads are usually of better quality. It is a common practice to trim the last few nucleotides to avoid less well-controlled errors that can arise there. The trimming affects the downstream steps including error model building, merging and chimera calling. FOMC uses an empirical approach to test many combinations of different trim length in order to achieve best final amplicon sequence variants (ASVs), see the next section “Optimal trim length for ASVs”.

Quality plots for all samples:

2. Optimal trim length for ASVs The final number of merged and chimera-filtered ASVs depends on the quality filtering (hence trimming) in the very beginning of the DADA2 pipeline. In order to achieve highest number of ASVs, an empirical approach was used -

  1. Create a random subset of each sample consisting of 5,000 R1 and 5,000 R2 (to reduce computation time)
  2. Trim 10 bases at a time from the ends of both R1 and R2 up to 50 bases
  3. For each combination of trimmed length (e.g., 300x300, 300x290, 290x290 etc), the trimmed reads are subject to the entire DADA2 pipeline for chimera-filtered merged ASVs
  4. The combination with highest percentage of the input reads becoming final ASVs is selected for the complete set of data

Below is the result of such operation, showing ASV percentages of total reads for all trimming combinations (1st Column = R1 lengths in bases; 1st Row = R2 lengths in bases):

R1/R2299289279269259249
30041.63%42.29%46.92%47.26%47.56%47.85%
29076.62%77.53%84.23%84.92%85.48%85.88%
28077.01%77.86%84.46%85.18%85.76%86.18%
27077.13%77.92%84.55%85.26%85.90%86.37%
26077.65%78.32%84.89%85.62%86.41%86.83%
25078.54%79.01%85.68%86.28%87.02%87.42%

Based on the above result, the trim length combination of R1 = 250 bases and R2 = 249 bases (highlighted red above), was chosen for generating final ASVs for all sequences. This combination generated highest number of merged non-chimeric ASVs and was used for downstream analyses, if requested.

3. Error plots from learning the error rates After DADA2 building the error model for the set of data, it is always worthwhile, as a sanity check if nothing else, to visualize the estimated error rates. The error rates for each possible transition (A→C, A→G, …) are shown below. Points are the observed error rates for each consensus quality score. The black line shows the estimated error rates after convergence of the machine-learning algorithm. The red line shows the error rates expected under the nominal definition of the Q-score. The ideal result would be the estimated error rates (black line) are a good fit to the observed rates (points), and the error rates drop with increased quality as expected.

Forward Read R1 Error Plot


Reverse Read R2 Error Plot

The PDF version of these plots are available here:

 

4. DADA2 Result Summary The table below shows the summary of the DADA2 analysis, tracking paired read counts of each samples for all the steps during DADA2 denoising process - including end-trimming (filtered), denoising (denoisedF, denoisedF), pair merging (merged) and chimera removal (nonchim).

Sample IDSRR12117916SRR12117917SRR12117918SRR12117919SRR12117920SRR12117921SRR12117922SRR12117923SRR12117924SRR12117925SRR12117926SRR12117927SRR12117928SRR12117929SRR12117930SRR12117931SRR12117932SRR12117933SRR12117934SRR12117935SRR12117936SRR12117937SRR12117938SRR12117939SRR12117940SRR12117941SRR12117942SRR12117943SRR12117944SRR12117945SRR12117946SRR12117947SRR12117948SRR12117949SRR12117950SRR12117951SRR12117952SRR12117953SRR12117954SRR12117955SRR12117956SRR12117957Row SumPercentage
input67,90576,89613,29986,12873,79670,07597,45277,01230,95836,55049,11675,57524,67564,56667,24680,6828,54225,22558,56266,81181,33228,08947,95574,62161,37372,25380,48672,37432,03516,43790,89831,67781,63621,19275,23274,98759,86141,12722,98417,9928,35773,2882,317,257100.00%
filtered67,77476,73413,27785,83873,55269,93097,21476,83430,87636,44749,02875,39524,61764,43767,10780,4938,51525,16558,42166,67081,10428,01847,80874,43361,23272,10980,27172,18631,95316,40990,65331,60381,45921,12875,04374,80159,72441,00322,92017,9568,33873,1212,311,59699.76%
denoisedF66,14675,57313,04284,70772,16368,40395,40875,63030,30035,76548,33274,56224,15763,67966,11279,4298,29724,56257,03965,52579,83027,32146,66373,70360,22071,06179,20871,14131,20816,05388,47730,76180,35620,63173,99873,53558,86940,44022,48617,6348,01371,6942,272,13398.05%
denoisedR66,01675,53612,90384,12572,05368,35995,30775,35830,18435,56748,23974,30323,96463,65166,05279,1688,21924,43657,24365,69379,98427,30346,60373,28560,35171,25579,20870,84931,10515,97488,56430,91280,04220,57773,72173,40558,45940,26822,36717,4257,82171,4382,267,29297.84%
merged61,00973,68912,65582,40869,38464,05990,49372,50728,74233,61146,70871,99222,90561,84563,73575,8467,72522,97453,39964,17678,21625,60144,35671,77459,06069,96076,93568,55229,30515,19383,80228,97676,78719,42770,98069,91055,67739,05121,44916,4947,19466,6142,175,17593.87%
nonchim56,72972,54312,54079,91066,33560,21585,92168,95627,85131,49943,80667,61022,15956,49358,55171,6187,38421,92949,04963,18777,30724,55142,99368,95857,78167,47073,68265,49027,81714,82579,86227,61672,29818,73068,10965,41852,24935,48820,23015,9357,01162,7392,070,84489.37%

This table can be downloaded as an Excel table below:

 

5. DADA2 Amplicon Sequence Variants (ASVs). A total of 2674 unique merged and chimera-free ASV sequences were identified, and their corresponding read counts for each sample are available in the "ASV Read Count Table" with rows for the ASV sequences and columns for sample. This read count table can be used for microbial profile comparison among different samples and the sequences provided in the table can be used to taxonomy assignment.

 

The table can be downloaded from this link:

 
 

Sample Meta Information

Download Sample Meta Information
#SampleIDBioSampleLibrary_NameSubjectIDSexAgeGroup
SRR12117920SAMN15404480OTWIN11Afemales12caries
SRR12117919SAMN15404481OTWIN21Bfemales12caries_free
SRR12117950SAMN15404482OTWIN32Afemales7caries
SRR12117939SAMN15404483OTWIN42Bfemales7caries_free
SRR12117928SAMN15404484OTWIN53Afemales8caries
SRR12117925SAMN15404485OTWIN63Bfemales8caries_free
SRR12117924SAMN15404486OTWIN74Afemales6caries
SRR12117923SAMN15404487OTWIN84Bfemales6caries_free
SRR12117922SAMN15404488OTWIN95Afemales11caries
SRR12117921SAMN15404489OTWIN105Bfemales11caries_free
SRR12117918SAMN15404490OTWIN116Amales9caries
SRR12117917SAMN15404491OTWIN126Bmales9caries_free
SRR12117916SAMN15404492OTWIN137Afemales8caries
SRR12117957SAMN15404493OTWIN147Bfemales8caries_free
SRR12117956SAMN15404494OTWIN158Amales10caries
SRR12117955SAMN15404495OTWIN168Bmales10caries_free
SRR12117954SAMN15404496OTWIN179Afemales12caries
SRR12117953SAMN15404497OTWIN189Bfemales12caries_free
SRR12117952SAMN15404498OTWIN1910Afemales9caries
SRR12117951SAMN15404499OTWIN2010Bfemales9caries_free
SRR12117949SAMN15404500OTWIN2111Amales9caries
SRR12117948SAMN15404501OTWIN2211Bmales9caries_free
SRR12117947SAMN15404502OTWIN2312Afemales12control
SRR12117946SAMN15404503OTWIN2412Bfemales12control
SRR12117945SAMN15404504OTWIN2513Afemales7control
SRR12117944SAMN15404505OTWIN2613Bfemales7control
SRR12117943SAMN15404506OTWIN2714Amales4control
SRR12117942SAMN15404507OTWIN2814Bmales4control
SRR12117941SAMN15404508OTWIN2915Afemales8control
SRR12117940SAMN15404509OTWIN3015Bfemales8control
SRR12117938SAMN15404510OTWIN3116Afemales9control
SRR12117937SAMN15404511OTWIN3216Bfemales9control
SRR12117936SAMN15404512OTWIN3317Afemales5control
SRR12117935SAMN15404513OTWIN3417Bfemales5control
SRR12117934SAMN15404514OTWIN3518Afemales9control
SRR12117933SAMN15404515OTWIN3618Bfemales9control
SRR12117932SAMN15404516OTWIN3719Amales4control
SRR12117931SAMN15404517OTWIN3819Bmales4control
SRR12117930SAMN15404518OTWIN3920Afemales4control
SRR12117929SAMN15404519OTWIN4020Bfemales4control
SRR12117927SAMN15404520OTWIN4121Amales5control
SRR12117926SAMN15404521OTWIN4221Bmales5control
 
 

ASV Read Counts by Samples

#Sample IDRead Count
SRR121179567,011
SRR121179327,384
SRR1211791812,540
SRR1211794514,825
SRR1211795515,935
SRR1211794918,730
SRR1211795420,230
SRR1211793321,929
SRR1211792822,159
SRR1211793724,551
SRR1211794727,616
SRR1211794427,817
SRR1211792427,851
SRR1211792531,499
SRR1211795335,488
SRR1211793842,993
SRR1211792643,806
SRR1211793449,049
SRR1211795252,249
SRR1211792956,493
SRR1211791656,729
SRR1211794057,781
SRR1211793058,551
SRR1211792160,215
SRR1211795762,739
SRR1211793563,187
SRR1211795165,418
SRR1211794365,490
SRR1211792066,335
SRR1211794167,470
SRR1211792767,610
SRR1211795068,109
SRR1211792368,956
SRR1211793968,958
SRR1211793171,618
SRR1211794872,298
SRR1211791772,543
SRR1211794273,682
SRR1211793677,307
SRR1211794679,862
SRR1211791979,910
SRR1211792285,921
 
 
 

VII. Analysis - Read Taxonomy Assignment

Read Taxonomy Assignment - Methods

 

The close-reference taxonomy assignment of the ASV sequences using BLASTN is based on the algorithm published by Al-Hebshi et. al. (2015)[2].

The species-level, open-reference 16S rRNA NGS reads taxonomy assignment pipeline

Version 20210310a
 
 

1. Raw sequences reads in FASTA format were BLASTN-searched against a combined set of 16S rRNA reference sequences - the FOMC 16S rRNA Reference Sequences version 20221029 (https://microbiome.forsyth.org/ftp/refseq/). This set consists of the HOMD (version 15.22 http://www.homd.org/index.php?name=seqDownload&file&type=R ), Mouse Oral Microbiome Database (MOMD version 5.1 https://momd.org/ftp/16S_rRNA_refseq/MOMD_16S_rRNA_RefSeq/V5.1/), and the NCBI 16S rRNA reference sequence set (https://ftp.ncbi.nlm.nih.gov/blast/db/16S_ribosomal_RNA.tar.gz). These sequences were screened and combined to remove short sequences (<1000nt), chimera, duplicated and sub-sequences, as well as sequences with poor taxonomy annotation (e.g., without species information). This process resulted in 1,015 full-length 16S rRNA sequences from HOMD V15.22, 356 from MOMD V5.1, and 22,126 from NCBI, a total of 23,497 sequences. Altogether these sequence represent a total of 17,035 oral and non-oral microbial species.

The NCBI BLASTN version 2.7.1+ (Zhang et al, 2000) [3] was used with the default parameters. Reads with ≥ 98% sequence identity to the matched reference and ≥ 90% alignment length (i.e., ≥ 90% of the read length that was aligned to the reference and was used to calculate the sequence percent identity) were classified based on the taxonomy of the reference sequence with highest sequence identity. If a read matched with reference sequences representing more than one species with equal percent identity and alignment length, it was subject to chimera checking with USEARCH program version v8.1.1861 (Edgar 2010). Non-chimeric reads with multi-species best hits were considered valid and were assigned with a unique species notation (e.g., spp) denoting unresolvable multiple species.

2. Unassigned reads (i.e., reads with < 98% identity or < 90% alignment length) were pooled together and reads < 200 bases were removed. The remaining reads were subject to the de novo operational taxonomy unit (OTU) calling and chimera checking using the USEARCH program version v8.1.1861 (Edgar 2010)[4]. The de novo OTU calling and chimera checking was done using 98% as the sequence identity cutoff, i.e., the species-level OTU. The output of this step produced species-level de novo clustered OTUs with 98% identity. Representative reads from each of the OTUs/species were then BLASTN-searched against the same reference sequence set again to determine the closest species for these potential novel species. These potential novel species were pooled together with the reads that were signed to specie-level in the previous step, for down-stream analyses.

Reference:

  1. Al-Hebshi NN, Nasher AT, Idris AM, Chen T. Robust species taxonomy assignment algorithm for 16S rRNA NGS reads: application to oral carcinoma samples. J Oral Microbiol. 2015 Sep 29;7:28934. doi: 10.3402/jom.v7.28934. PMID: 26426306; PMCID: PMC4590409.
  2. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000 Feb-Apr;7(1-2):203-14. doi: 10.1089/10665270050081478. PMID: 10890397.
  3. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12. PubMed PMID: 20709691.
  4. 3. Designations used in the taxonomy:

    	1) Taxonomy levels are indicated by these prefixes:
    	
    	   k__: domain/kingdom
    	   p__: phylum
    	   c__: class
    	   o__: order
    	   f__: family
    	   g__: genus  
    	   s__: species
    	
    	   Example: 
    	
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__faecis
    		
    	2) Unique level identified – known species:
    	   
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__hominis
    	
    	   The above example shows some reads match to a single species (all levels are unique)
    	
    	3) Non-unique level identified – known species:
    
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__multispecies_spp123_3
    	   
    	   The above example “s__multispecies_spp123_3” indicates certain reads equally match to 3 species of the 
    	   genus Roseburia; the “spp123” is a temporally assigned species ID.
    	
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__multigenus;s__multispecies_spp234_5
    	   
    	   The above example indicates certain reads match equally to 5 different species, which belong to multiple genera.; 
    	   the “spp234” is a temporally assigned species ID.
    	
    	4) Unique level identified – unknown species, potential novel species:
    	   
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ hominis_nov_97%
    	   
    	   The above example indicates that some reads have no match to any of the reference sequences with 
    	   sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. However this groups 
    	   of reads (actually the representative read from a de novo  OTU) has 96% percent identity to 
    	   Roseburia hominis, thus this is a potential novel species, closest to Roseburia hominis. 
    	   (But they are not the same species).
    	
    	5) Multiple level identified – unknown species, potential novel species:
    	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ multispecies_sppn123_3_nov_96%
    	
    	   The above example indicates that some reads have no match to any of the reference sequences 
    	   with sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. 
    	   However this groups of reads (actually the representative read from a de novo  OTU) 
    	   has 96% percent identity equally to 3 species in Roseburia. Thus this is no single 
    	   closest species, instead this group of reads match equally to multiple species at 96%. 
    	   Since they have passed chimera check so they represent a novel species. “sppn123” is a 
    	   temporary ID for this potential novel species. 
    

 
4. The taxonomy assignment algorithm is illustrated in this flow char below:
 
 
 
 

Read Taxonomy Assignment - Result Summary *

CodeCategoryMPC=0% (>=1 read)MPC=0.01%(>=206 reads)
ATotal reads2,070,8442,070,844
BTotal assigned reads2,068,8792,068,879
CAssigned reads in species with read count < MPC018,312
DAssigned reads in samples with read count < 50000
ETotal samples4242
FSamples with reads >= 5004242
GSamples with reads < 50000
HTotal assigned reads used for analysis (B-C-D)2,068,8792,050,567
IReads assigned to single species1,311,4131,300,690
JReads assigned to multiple species707,987704,439
KReads assigned to novel species49,47945,438
LTotal number of species804276
MNumber of single species428215
NNumber of multi-species14048
ONumber of novel species23613
PTotal unassigned reads1,9651,965
QChimeric reads1515
RReads without BLASTN hits1919
SOthers: short, low quality, singletons, etc.1,9311,931
A=B+P=C+D+H+Q+R+S
E=F+G
B=C+D+H
H=I+J+K
L=M+N+O
P=Q+R+S
* MPC = Minimal percent (of all assigned reads) read count per species, species with read count < MPC were removed.
* Samples with reads < 500 were removed from downstream analyses.
* The assignment result from MPC=0.1% was used in the downstream analyses.
 
 
 

Read Taxonomy Assignment - ASV Species-Level Read Counts Table

This table shows the read counts for each sample (columns) and each species identified based on the ASV sequences. The downstream analyses were based on this table.
SPIDTaxonomySRR12117916SRR12117917SRR12117918SRR12117919SRR12117920SRR12117921SRR12117922SRR12117923SRR12117924SRR12117925SRR12117926SRR12117927SRR12117928SRR12117929SRR12117930SRR12117931SRR12117932SRR12117933SRR12117934SRR12117935SRR12117936SRR12117937SRR12117938SRR12117939SRR12117940SRR12117941SRR12117942SRR12117943SRR12117944SRR12117945SRR12117946SRR12117947SRR12117948SRR12117949SRR12117950SRR12117951SRR12117952SRR12117953SRR12117954SRR12117955SRR12117956SRR12117957
SP1Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;sp. HMT780378178678215844735125710165913311970635513537523345160386142411043601029265650119926302608443263721128482224210678099618112719244678
SP10Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp. HMT2753000010016121206000053005334009011180150001708012200000000
SP101Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;sp. HMT5138056600066167170074000007727903591133412021137151260030619009713
SP103Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;matruchotii2539503941198116186134024303410355319100261819021370754475779786416672174481142291700140350
SP104Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;socranskii37100124305700000000006500235400000011255000001890017
SP108Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;sp. HMT9080000000359017038000000000000000000000000000000
SP110Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT12628000000000000890005834150011000005542000001800046
SP113Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;parvula278171525315808000109013931304993300293111938221141001154612663012322014980100426
SP115Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;denticola210005850000700000000024017000000092350000008000
SP116Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-2];Saccharibacteria_(TM7)_[G-5];bacterium HMT356058000000000000000030000001540000801600001803315000
SP118Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;dianae5400010511000000000000000000000000199383001500000067
SP119Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT3080061153913372704326461001010206120000000010061810026754192381920441138
SP120Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT9423914990234351532034300190120622411613324110498077424106103000036783211299000193
SP126Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;morbillorum5896708649960205132753446827910132535029804516549183552040280401720012444201634189436901121126125257
SP129Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;scopos00000006200009064001260000000000321200601441708000
SP13Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;leadbetteri296533812938410814900595893156723487329317317673427617832646067513203157155231730677347100325
SP131Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;intermedius290020860003300129560461616002551011130031000001467581900000000
SP132Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;noxia83827798212000050014800028214537210010019000017083180000201900116
SP134Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;lactamica00000004683030000000000000000004200000000000000
SP137Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Simonsiella;muelleri0171093001194042510000007029434000000000000012505001196700000
SP138Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;graevenitzii117103580672218733666615426364044124070331080590419000583200550212293551351501221324
SP139Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT346187220952180000015001100011581535167330731011100035511707002257200255
SP14Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;mucilaginosa4164186573654517810381859951155590415041993015427492032811191532371927142510832686521219676943728991721139357337016562932838331249744472213242466
SP140Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sputigena1200034234001380000000002050203012715612390503823051001211021000301
SP142Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;melaninogenica10905385611881760635167916381003722181538731003637771314724142589998644548482108139624365232892362530340515808783942163230260411744797096402549
SP144Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;durum9421037653910266951130208114733270903372327316829003315813671580601801560000126
SP146Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;sp. HMT898258510005843000000042000000303690007150054117700330000095
SP148Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT91452550001541414110522040202349115402027014840785411305315370320211027200101723
SP15Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT392179310052243300019220162800001187101771671130020002700039000000128
SP151Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT215273781027267193121108695649998928496015321060015233600025460180801660222341841718173539
SP155Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT91290000280147008130000001422001009000004215480200000004
SP156Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;atypica10802462252160011389373902433101941221817380395379070362700001411531707683152097521706759214324369
SP159Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;denticola000321790000000000000110001020148000044927003302470050
SP16Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT4732904633129717231678643624111363902106648774633859264091350205010986631025107455013456401298612023946852767991911882975843162974350315011234256
SP160Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT317711210014105100064001500009840020352005500052882509300000034
SP162Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;hongkongensis430381645485002922252761000103016324229621021836120100086462828227051000086
SP163Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-3];bacterium HMT100239001830440035001925350053350513710280360351400500480010
SP169Bacteria;Gracilibacteria_(GN02);Gracilibacteria_(GN02)_[C-2];Gracilibacteria_(GN02)_[O-2];Gracilibacteria_(GN02)_[F-2];Gracilibacteria_(GN02)_[G-2];bacterium HMT873310000151600000042700007018204600000027001500000047
SP172Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;endodontalis2016000511828002100000800650003701033100035422990066044816000
SP173Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;oris6600580300560669220639670001064714097365090363802330428216118890330059210042
SP174Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;elongata5550129332412716811747212153457215501512134479213551704610112691503685739026396417207100112
SP178Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT388000000000000000000000000000000441930000000000
SP18Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT41201730000000000000000010000000000006700000000000
SP184Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;nanceiensis721893214124296745019713311609921516310029726644111910618311112819322669130137024841342544146325231084559174915458721
SP186Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT9521810062300000000580000002801202400001375958031171000031
SP188Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Dialister;invisus34362362349190001616000000210522540517800062751101500572632156084
SP189Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;oralis10552212102064154106043500201833584320239818197110180024510231616321620147004019001450
SP191Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;sp. HMT20397129000213900020390000001034178000000022005613001200000029
SP192Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Weeksellaceae;Weeksellaceae_[G-1];sp. HMT93121112170083545356245036164454140026012253354280030030043712203610853715000015
SP195Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;veroralis276401622560000020000000025000320924100001356714000000260149
SP196Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;sp. HMT458162102042431082508521484290000015394015932118332121571215318411506882820120064025
SP2Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;elegans87018915321426219761859225454310338714862131210550255886192191062633629555459310320591196228782780411602171730169708165613511226366434210752
SP20Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT223000924300000000000000000490024000038290000000000
SP218Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;haemolyticus103980146282235276934753400443568614221436116213120116571503731912003331622035300100252629
SP219Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT13780032560006000005000011032082130000000400210000000
SP220Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;massiliensis0001553120000211000000000134443000250000018000000000
SP221Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;gracilis470102113034000059150080000783312712410000100016639310267042100050
SP222Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;jejuni000660007529751038461652108403187000000000120004600772070813200
SP228Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;paraphrophilus00000021008686000321200440981640603838000040000000000
SP229Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;aphrophilus00000215660000000210120411525000029482100001820005000000
SP23Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;gordonii55300878221900400643200330000352200431433839814710000136056918506600693252410332
SP230Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;nigrescens791101520050001233000001092200300062130100397000210702700122
SP231Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Weeksellaceae;Cloacibacterium;sp. HMT206139164900090170600002173468265733750117374017980803515513480657602701541305489139745190546
SP232Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;subflava990000167590100707191988463685263216812043917824638812128028924206161240022398436001322752
SP233Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT349000010200000000000002400065000000026888000009365000
SP239Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT21299802504342046000002829440028355535100259091100280002100371573340180082
SP24Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Schaalia;sp. HMT1720569030302336629862660014800510000000209067001919700043460002917000067
SP240Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sputigena3257211115119818614070172671900652444609913350822110639213986805235301516701963754583003490502
SP242Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;salivae2930693385657819613176128320201168020528000174503653300462550039013776331372950879458488
SP243Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;dispar7769874366276436212576170363589183427953461339127733332113262406968201209124612517097885975657103498216194478124138030862662154513064231361148
SP244Bacteria;Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;Cardiobacterium;hominis89172110725412286503327053482101426154100404814343326879702253811381111531480068
SP245Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Pseudostreptobacillus;hongkongensis23000018019231054412324107801731002916150700002131353000000000000212
SP246Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sanguinis9034905642023118324818158130135198567220692263044185228954414950156328977102115545492545385114316422296156231430288
SP247Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;paraphrohaemolyticus00037000000000260000000890000186630000001557810004100
SP248Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;parahaemolyticus070318391341717477664559488300115691125492030331205602000076513279064189396510011515608380236
SP249Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT2251201000511189030000300011022858183704600205791223271551002175487033064000092
SP25Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;rogosae255986305449668439111598293023243421265591565156217173366911422328725691324023032704857647211922711112509210243226298
SP253Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;pyogenes00000006001380001340000159000000000000000000000
SP255Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;cinerea3923140119167789171141019025013915442824448924120760142420100116372345111402706651289501601213188009587212
SP256Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;shahii0192115001517274158690423206629130220440230384397028187290000011346001280
SP258Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;gingivalis142275117641444562204424017050290484217713010613167102187194123014819111160140463100135
SP26Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT44303600013790000040000052802300230000149460000000000
SP260Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;thermophilus3250000000000006372121752980000000000000000000000000904
SP262Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT218000008183722000000000330000000001153940013800000005800
SP264Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoanaerobaculum;orale0010129470376236016131036603500160000131100012015330102102895303421016
SP265Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT4751830001091500005000600002016019331328011002561929018600750067
SP266Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT8780000017170000000000002310226301600000000000000000
SP267Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;hwasookii31900002378600000008700023152059156001130750011547550851420100123
SP27Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Johnsonella;ignava850028159000518070000011541000061810000000900000010
SP271Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-3];bacterium HMT351290013392361262601512115000078007130366300248474243121814177288056
SP277Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Schaalia;sp. HMT180317801219551913042105716131970636620579904023417316022103181664683202481289914350102749713997658811522
SP278Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT30616300046226217427706617000080000003016000160650000120480900284556101
SP279Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;vespertina000001659830000340000000000000000851360460000000000
SP285Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp. HMT2784128110118991900000142276339216819842478145270008040306594163417901201265
SP287Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;pittmaniae1911501318070004780014420328422800830000000915700103000006600132280
SP29Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT869000813704000000000000000000000003122001300130000
SP290Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Kingella;denitrificans50802209513431021202035113211317014103122202640001718800240780186090110000
SP291Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Kingella;sp. HMT0120000062092000001800131081401000200014151400000000
SP292Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;maculosa9412057265176250001500000002221145117301121001331021140000000109
SP298Bacteria;Firmicutes;Clostridia;Eubacteriales;Ruminococcaceae;Ruminococcaceae_[G-2];bacterium HMT085123419116331440534328241514631184436221155722821314447169756432969715401027925
SP299Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Megasphaera;micronuciformis12100461653332811831290204628500062250001708890061739621710157305018523103336202
SP3Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;pasteri2112148945912545021862727691335880116142447912989784220196124918874709571826482047033648197024257446229011631276212172245673482321343702243233
SP30Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;endodontalis240220102000001330071900000001240017131700138291492400200038
SP301Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Weeksellaceae;Riemerella;sp. HMT32215114687124130891835596941502713122622926286022889413601197711785548416114422113848126571821019236
SP302Bacteria;Actinobacteria;Actinomycetia;Propionibacteriales;Propionibacteriaceae;Arachnia;propionica2709071510203018509102001025913303571102828120001112008000006
SP304Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;vincentii27140000250400000000007022140000000091000310000000
SP305Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Lautropia;mirabilis58547893291452397501165039088592610413736004441130340019748462666342649149821406432636517130635820127865621160412
SP309Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;parasanguinis_clade_41100026192450044190706250762417822301231830000000002302310488180921835022340381089
SP31Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;sp. HMT23730285800000508000000246000850510000097000000000018
SP312Bacteria;Gracilibacteria_(GN02);Gracilibacteria_(GN02)_[C-1];Gracilibacteria_(GN02)_[O-1];Gracilibacteria_(GN02)_[F-1];Gracilibacteria_(GN02)_[G-1];bacterium HMT8721410018081900000013000008120046468349300085382814060247250152
SP313Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;hofstadii00083943051570282912029203000570116300065440000174204700287900000
SP314Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Dialister;pneumosintes0120000500000000000160002500000001411900000050000
SP317Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Catonella;morbi06172403436217154395602619934350174530056003344010111000339230350629350
SP318Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-2];bacterium HMT09612012013018278233138008032462900501205500000811255100000009020
SP32Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;parainfluenzae200024145424238163215512111793138953271137142151881168929791741403373543167848512292579715123313387007943101823128272014356432269113398247326991621
SP320Bacteria;Bacteroidetes;Bacteroidetes_[C-1];Bacteroidetes_[O-1];Bacteroidetes_[F-1];Bacteroidetes_[G-5];bacterium HMT5115328016510100020000000050001440650000131900000000039
SP322Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;sp. HMT231000056000000000000019000921200000017000000000019
SP327Bacteria;Firmicutes;Clostridia;Eubacteriales;Ruminococcaceae;Ruminococcaceae_[G-1];bacterium HMT0752871360491076439098373100016349011027981310133137045833112382259680534861036393412251816258
SP339Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;flueggei90087400000000010000043012066000001801910110000000
SP36Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;anginosus1380001320000000000000005519100014000001688200140012981090069
SP363Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Peptidiphaga;sp. HMT18390013947600011611000000030085000000015659300050005
SP37Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;dentocariosa197004901247317522953101111123117760343001333001360102150015045132808219913609537113758153
SP373Bacteria;Absconditabacteria_(SR1);Absconditabacteria_(SR1)_[C-1];Absconditabacteria_(SR1)_[O-1];Absconditabacteria_(SR1)_[F-1];Absconditabacteria_(SR1)_[G-1];bacterium HMT8743506200780153000022003780038138401534100530000973724341167001600114
SP376Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT1693700660102000147074740000002176702187100000038069000000000
SP377Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Kingella;oralis660199207822307419012000182154467281721141267282080101043427603600011
SP378Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;trevisanii4609206610171246000000074290033815429133214455751310025262291538130000063
SP379Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;baroniae00000000000000000000000000000003240000000000
SP382Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT4988205130122200008030000001200017062616094000191816110010901700001806
SP384Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Solobacterium;moorei725712244814620177792699251936243255122242606613312052029251815022531641391917
SP385Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Eikenella;corrodens015018105212100013100030000012955022291324000022012025001790055
SP388Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Eikenella;halliae000037460000400632100012244131315290500020262301504290023
SP391Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;aeria54056244412591942554021671806419582551542972405425957916146724159012721475224936532121331140421300435
SP393Bacteria;Actinobacteria;Actinomycetia;Bifidobacteriales;Bifidobacteriaceae;Scardovia;wiggsiae170070000000000000000000036110000016340024902520000
SP396Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT909000000000000000000000000000000194340000000000
SP4Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;sp. HMT25700401800000000000003400000009000238250000000000
SP40Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT3324634100210013001300060005562180113643456003009125160254711009015
SP41Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;rava146005142412329000005800127002100005060421617011000001165
SP411Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Anaeroglobus;geminatus090311300000000000000000000400002039800060530000
SP412Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT175000113004200000000000000020446000000000000000000
SP413Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidales_[F-2];Bacteroidales_[G-2];bacterium HMT27414411347101733626006800362168012101605482165000209750023009080088
SP42Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT417738897618622899102113021935399304667901511163033631619614610403981940224151862478103783002903302207996879
SP422Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT136400013680356215310061841316022990171464027000364811319230163305953
SP423Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;naeslundii5144001172149290702611820911010014289143119015018202116001684603608028000038
SP424Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;histicola3503153816302789065730374367046402150164117000001869200378073912362158567204304189829275790
SP426Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;perflava764552565829220818251064228712947863673755554000133565059072788973106561643218820457002748413433003602010478
SP43Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;intermedia0000057360000002313000144130000015161700711750000000000
SP44Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;sp. HMT248207165601219142510120000000092477100363150217001732319000566880012723124113002721
SP454Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;buccalis7516902496487957290000044001301192561754406644003127479120992588634300460233
SP455Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Lancefieldella;parvula03710021752382346285819745859334308619722913005335008053925820412954279360109651555342
SP456Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;micans0004190700000000000080000313019960067561002500512000
SP458Bacteria;Firmicutes;Clostridia;Eubacteriales;Peptostreptococcaceae;Peptostreptococcaceae_[G-9];[Eubacterium]_brachy6600270000082300000014133100309000056460000075006
SP459Bacteria;Firmicutes;Clostridia;Eubacteriales;Peptostreptococcaceae;Peptostreptococcus;stomatis8513235194328213136415538280466687019011369249462007434555010209305237432112287334203681183787
SP460Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;granulosa18600357268622501201745032117000323286491590230000022049360270240000276
SP461Bacteria;Absconditabacteria_(SR1);Absconditabacteria_(SR1)_[C-1];Absconditabacteria_(SR1)_[O-1];Absconditabacteria_(SR1)_[F-1];Absconditabacteria_(SR1)_[G-1];bacterium HMT345186330447012000001500000010320380873670003790580000000000
SP465Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;adiacens519122948413604481872634367716988371923966010191354332016107157103573727665010762131401615437185886437166797115366846512058852
SP468Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoanaerobaculum;saburreum000919500000000000000171502100000009400000000000
SP49Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._vincentii000000600030000000006794004900000001771240000000000
SP5Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Schaalia;lingnae001856005200026431601099800043000001751005500011792002636591600
SP50Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum690014841295610031000522200000461182002481170000041010918007400133390077
SP506Bacteria;Absconditabacteria_(SR1);Absconditabacteria_(SR1)_[C-1];Absconditabacteria_(SR1)_[O-1];Absconditabacteria_(SR1)_[F-1];Absconditabacteria_(SR1)_[G-1];bacterium HMT8751770000398200570000755039184023073010418202443151514900345800017360
SP507Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT34719004700000000000000007325841200032100005300000000
SP508Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT3520540126083401169103721993074901542015536801633097018927600108823001008635248151196213191345
SP51Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;pallens42368553639370109101583910235522600151051428701119046271118306001582431184220209148771713817305311721073
SP52Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp. HMT930177586410023623775758212103116416822818258298245022964145613109751866124444053259019323453725163570012768144
SP528Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus;delbrueckii5000000000000066239000000000000000000000000011
SP53Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;saccharolytica861331951550000300700010128348218111155007434901400000053
SP530Bacteria;Actinobacteria;Actinomycetia;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;dentium280001250000000000000000000400000515800000287120040
SP54Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oulorum7500184336000000000000001508171719000003009242181111039170042
SP55Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT472385000487862000191503447110003107331318701407010340082249308480000050
SP560Bacteria;Firmicutes;Tissierellia;Tissierellales;Peptoniphilaceae;Parvimonas;micra18008700000000151000041032037003800000000003357000
SP561Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;sanguinis113123524113124526112548172549942161111110507867310166535998468015728136015361481521474427769540229232123761412048656651005
SP568Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT863128000022700000013000001619019003700006016006900075036
SP570Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Pseudoleptotrichia;sp. HMT219550000000000000000003951000180000026700000000054
SP575Bacteria;Firmicutes;Clostridia;Eubacteriales;Peptostreptococcaceae;Filifactor;alocis00001817230002000000000113050025000015820200030250000
SP578Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Oxalobacteraceae;Undibacterium;seohonense0000180000000000000029325000000000000000000000
SP582Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-2];bacterium HMT08812488160015700080003911008771021881001301000121300000100000
SP585Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Stomatobaculum;longum000841101759700600000000911000000007011000027150010
SP593Bacteria;Firmicutes;Bacilli;Lactobacillales;Aerococcaceae;Abiotrophia;defectiva3203083511146341474256513391181185061331513612724824669109307851693622081595424023571861253933210284
SP6Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Tannerella;sp. HMT2862813037251291560549170130000064923666233854100007542548330016170047
SP60Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;tannerae106335103748157017401570000466000260135200126914305051099922180
SP600Bacteria;Gracilibacteria_(GN02);Gracilibacteria_(GN02)_[C-1];Gracilibacteria_(GN02)_[O-1];Gracilibacteria_(GN02)_[F-1];Gracilibacteria_(GN02)_[G-1];bacterium HMT871090138000407001319060039232112650000000000670300000
SP601Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;wadei4900299334000000000000000795144400660000051235500033510000132
SP607Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Veillonellaceae_[G-1];bacterium HMT1550001532000000000000000000004000071810000085000
SP61Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT90100000000000000000000001270000000000035202100000
SP613Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT463000000130000000000000000019000002627800390000000
SP616Bacteria;Firmicutes;Clostridia;Eubacteriales;Peptostreptococcaceae;Peptostreptococcaceae_[G-1];[Eubacterium]_sulci1427300292312012106745946706150491290840010111400501800211052040014611515
SP619Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Stomatobaculum;sp. HMT0970000292367461021378742274001118203802101721562307500042616140010
SP626Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Pseudoleptotrichia;goodfellowii0001026000001426001200014066271505005093000000157070000
SP63Bacteria;Firmicutes;Clostridia;Eubacteriales;Peptostreptococcaceae;Peptostreptococcaceae_[G-7];bacterium HMT0810000000000000000004000000000001701030000000000
SP64Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Oribacterium;asaccharolyticum00019360251880323900000015000003300000012000001117000
SP647Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;argentoratense6200000000000000000000000000000000000006968044
SP65Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Peptidiphaga;gingivicola21160005100000002334000001020002040005039380000000078
SP654Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;mutans0002370000000000000000000000000026211800606072000
SP66Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oris371235861884150391371244551100142722732193252150484591611815003522798625133121091913247952814193
SP665Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT0740202218665212671201756205647203714260006626078770350012011800003091660453195605552590227
SP67Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT3143741170040734701030250000581030597024622411015214100004912916500244800001296
SP671Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Oribacterium;sinus02072053862712410025564812203996043105110162750741345471624200627281327692801523022
SP674Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Oribacterium;parvum020000351822310141422103634000323335021157917009918000033522600000
SP7Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Weeksellaceae;Weeksellaceae_[G-1];sp. HMT90021345007128000000000000018000011000030210000000000
SP70Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;concisus1991173270114432148340192652556916338150090174119262720310220150402524124183597657961005732100
SP71Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;flavescens12452862770263035813496401110713961940215335214215145161350379246439805111651404852671061026742749011226329816438601001942264
SP72Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT9578400031000000000000000048106083128200002671360000490000220
SP77Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;shahii78714701725500830000083361583015695537300146183904900066427959322978501524700601
SP78Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Pseudoleptotrichia;sp. HMT221490043430312381474789879571021411335710070434148033271570013148160441422804338002325142
SP79Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;lactarius5000040217000005800000000000000212300021000846157481186000
SP8Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;sputorum411952710501332121621064703820624026501742100315312703917442346026517204371344000900
SP80Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;haemolysans2325399154111093063763423264842775363467091501638322420334024754109165523689435125115813722446971682660241024851470239231529813403786361024287105198744521909
SP81Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;periodonticum5395721412469541541216546427798321227664145661086144360871548448176892405410753179330512194866140654821388334820104100157663
SP82Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-6];bacterium HMT870716560419230187917918032215006471922318720312988804177480012142386218138134114673893334530116
SP83Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT348141304000000012003100000990292602200000387710000028160055
SP84Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Weeksellaceae;Weeksellaceae_[G-1];sp. HMT9071380002900000000000001000054192103714003302503000000048
SP85Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Schaalia;odontolytica205950655171441132619337148106526942186907074388402429139001402172921210746021212124150690122
SP88Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;Ottowia;sp. HMT894336041290300000005540000341384900051900868000000200453
SP9Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;catoniae081001623013275102618043025007504702167700652270432411617007000
SP94Bacteria;Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;Cardiobacterium;valvarum85190013712000518901211000039445652207130137006423110140065300047
SPN112Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Simonsiella;muelleri_nov_97.190%09000342250090000000007000000183497950100000002774
SPN136Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Oxalobacteraceae;Undibacterium;terreum_nov_97.897%0992100000000000000419039008008000000000000000
SPN141Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-2];bacterium HMT096 nov_97.761%000000090500012260000113500700000000000000000019
SPN146Bacteria;Gracilibacteria_(GN02);Gracilibacteria_(GN02)_[C-1];Gracilibacteria_(GN02)_[O-1];Gracilibacteria_(GN02)_[F-1];Gracilibacteria_(GN02)_[G-1];bacterium HMT872 nov_95.522%46000083900002103140110010400800000009000130000000
SPN37Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;sp. HMT018 nov_97.897%2500000000000001708000701500003300000000900000129
SPN57Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Pseudostreptobacillus;hongkongensis_nov_95.556%0000000013501200077120724123220401000544398837190151900774016900002091060
SPN68Bacteria;Cyanobacteria;Oscillatoriophycideae;Oscillatoriales;Microcoleaceae;Arthrospira;platensis_nov_86.064%007170003000000047907041075816012001500000120113118000059
SPN79Bacteria;Firmicutes;Clostridia;Eubacteriales;Ruminococcaceae;Ruminococcaceae_[G-1];bacterium HMT075 nov_94.514%00000110640900615003124200250187080375470340400000000024290
SPN90Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;granulosa_nov_91.962%202010003732003400025146230187214501813840049001918140047180000380
SPN98Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Pseudostreptobacillus;hongkongensis_nov_96.790%4032915910057841449955100290139284629479147237224669458116637017359627741045144392160220122658874020020761629
SPP1Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp1_38300671080320008200000000136840184000344500856100290012230098
SPP10Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;multispecies_spp10_238025000814900057760000000431032371082250200606202647608011440345
SPP105Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp105_22048012349530000161141065000001360083574900000030000006074000
SPP107Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp107_35600202315000095191009800005918407400270400030350100063370033
SPP119Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;multispecies_spp119_290000001750027480052260363280026212334035000000331312000075
SPP125Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;multispecies_spp125_2640310000000000003000000002324059220000000000000242
SPP126Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoanaerobaculum;multispecies_spp126_218331444233755469312258156812912483281631261567013701053101152037150572949102121
SPP13Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Moraxellaceae;Moraxella;multispecies_spp13_2952000095375000000003200380161410002725361151890040221806112622200617203
SPP137Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;multispecies_spp137_2662001921311213701422029003606270006283627200004265586026841200029015
SPP138Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;multispecies_spp138_2256000100700000000000190003402712000029480011000000211
SPP14Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;multispecies_spp14_38948627217302211244953525297327217144240367470251043841024113924228420799037571002722118103304504417182
SPP16Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;multispecies_spp16_228226878401641951783868997810516867211184941776126651451407836300021871131712951229760201402744
SPP17Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;multispecies_spp17_390000490000000012000004533495101800000062932256310780151100107
SPP24Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;multispecies_spp24_20000000000000008000020420000000060000000000000
SPP25Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Lancefieldella;multispecies_spp25_200007600000032000000000055000000000000120000093
SPP26Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;multispecies_spp26_20000000000000000000000000000001757300000150000
SPP27Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;multispecies_spp27_2407143150311646410283570121422011526298126223122613172211110159306011781314482180139
SPP28Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;multispecies_spp28_20300002470000000000000000001094060000000000000000
SPP29Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp29_200000007277000046693702509431700000233300004400013000000
SPP34Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp34_30111333101202946640526003418000282646012014900170134000048290131526163018
SPP35Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp35_33270501230211013443381226336824306186216068164084000520370934825242712261816830812912735091
SPP36Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp36_28154628031438422632476754214215884911354229716107422227512221001314301311036212715514422920612713592812968839754943463889
SPP38Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;multispecies_spp38_20039000117000000119115000000052810000000027629042000000
SPP4Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp4_2000020000450000000000000042000000023715200024010900084
SPP47Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp47_319378000697800000000000651100000000001407500201000000265
SPP49Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp49_48200000000000000000001240000000002439000000000152
SPP5Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;multispecies_spp5_2128490085555587511131127071815703872401105356797902111303211641670001293600040032
SPP50Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp50_210011519318170473202431111734106385412150202203771001250003803
SPP54Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp54_17947919285145312142980212137166351864157178117113151947552041565795761504424722442523120892260275976756337662170381833926350263526352469916884361716210161517946139899631149943870216393810361
SPP55Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp55_1834520600010991113362343421914019721290000077047222190645012700009808449233782147720451658620600
SPP56Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp56_26364676416149931092863149911752712763940726480119741651647386244436271621784151372247358419294683073
SPP57Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;multispecies_spp57_2169422821621294404464143881359131703911778784612629937931414992641401437382314521817110377225151733185615208212235631163
SPP58Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;multispecies_spp58_200098016100075000415300023927047957800115133001900000000000
SPP61Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;multispecies_spp61_29442180000000000000000232710000000000000000000023
SPP64Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;multispecies_spp64_2571520403869807562672560024837531200398500025413581702401823109567301130411019186129009065
SPP67Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Schaalia;multispecies_spp67_200650000018031201000008800000000000000002518670103000
SPP69Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;multispecies_spp69_4274521731715642368176383268116472529284270113123609292182179452102524192710841119501443011373041641508194256953443912212281444819201072
SPP7Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;multispecies_spp7_23700125200000000000000107008182005000142713133900000023
SPP70Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;multispecies_spp70_2138127788200410000003218020000006600000058001300000000
SPP75Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Catonella;multispecies_spp75_21010009300000120000000067580581900450009987350000000030
SPP76Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-2];multispecies_spp76_223408000344002000083912530007435111033901724281980206578304800264440
SPP78Bacteria;Firmicutes;Clostridia;Eubacteriales;Peptostreptococcaceae;multigenus;multispecies_spp78_215014016401217800151903446110065931153918023423771202495426020200120075
SPP82Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp82_2101401261800000000000002400020013481000013300000890000
SPP84Bacteria;Absconditabacteria_(SR1);Absconditabacteria_(SR1)_[C-1];Absconditabacteria_(SR1)_[O-1];Absconditabacteria_(SR1)_[F-1];Absconditabacteria_(SR1)_[G-1];multispecies_spp84_2158880004332680000630290021754723226158750007402900000000000055
SPP87Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp87_35171583538118421481137600041010979951001616603121335203201461075344006601737111622683652743000251
SPP89Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;multispecies_spp89_300059108000000000000015000760024000011662260800000036
SPP9Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;multispecies_spp9_300012049013000000101000880210293102141300034190019032005040
SPP91Bacteria;Firmicutes;multiclass;multiorder;multifamily;multigenus;multispecies_spp91_301000002971120478625230000070367542701132931110502421112011000011140
SPPN15Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;multispecies_sppn15_2_nov_96.445%30300002200000000000006501034391102050000170440008000
SPPN17Bacteria;Proteobacteria;Alphaproteobacteria;Hyphomicrobiales;Parvibaculaceae;Rhodoligotrophos;multispecies_sppn17_2_nov_77.073%0012500000000000000000194116000000000000013700000
SPPN3Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_sppn3_2_nov_97.531%1060000481209426370000183202432236173013835323317429007821628931200460201851310025453337
 
 
Download OTU Tables at Different Taxonomy Levels
PhylumCount*: Relative**: CLR***:
ClassCount*: Relative**: CLR***:
OrderCount*: Relative**: CLR***:
FamilyCount*: Relative**: CLR***:
GenusCount*: Relative**: CLR***:
SpeciesCount*: Relative**: CLR***:
* Read count
** Relative abundance (count/total sample count)
*** Centered log ratio transformed abundance
;
 
The species listed in the table has full taxonomy and a dynamically assigned species ID specific to this report. When some reads match with the reference sequences of more than one species equally (i.e., same percent identiy and alignmnet coverage), they can't be assigned to a particular species. Instead, they are assigned to multiple species with the species notaton "s__multispecies_spp2_2". In this notation, spp2 is the dynamic ID assigned to these reads that hit multiple sequences and the "_2" at the end of the notation means there are two species in the spp2.

You can look up which species are included in the multi-species assignment, in this table below:
 
 
 
 
Another type of notation is "s__multispecies_sppn2_2", in which the "n" in the sppn2 means it's a potential novel species because all the reads in this species have < 98% idenity to any of the reference sequences. They were grouped together based on de novo OTU clustering at 98% identity cutoff. And then a representative sequence was chosed to BLASTN search against the reference database to find the closest match (but will still be < 98%). This representative sequence also matched equally to more than one species, hence the "spp" was given in the label.
 
 

Taxonomy Bar Plots for All Samples

 
 

Taxonomy Bar Plots for Individual Comparison Groups

 
 
Comparison No.Comparison NameFamiliesGeneraSpecies
Comparison 1caries_free vs caries vs controlPDFSVGPDFSVGPDFSVG
Comparison 2females vs malesPDFSVGPDFSVGPDFSVG
 
 

VIII. Analysis - Alpha Diversity

 

In ecology, alpha diversity (α-diversity) is the mean species diversity in sites or habitats at a local scale. The term was introduced by R. H. Whittaker[5][6] together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites or habitats at a more local scale (alpha diversity) and the differentiation among those habitats (beta diversity).

 

References:

  1. Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338. doi:10.2307/1943563
  2. Whittaker, R. H. (1972). Evolution and Measurement of Species Diversity. Taxon, 21, 213-251. doi:10.2307/1218190

 

Alpha Diversity Analysis by Rarefaction

Diversity measures are affected by the sampling depth. Rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples. Rarefaction curves generally grow rapidly at first, as the most common species are found, but the curves plateau as only the rarest species remain to be sampled [7].


References:

  1. Willis AD. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol. 2019 Oct 23;10:2407. doi: 10.3389/fmicb.2019.02407. PMID: 31708888; PMCID: PMC6819366.

 
 
 

Boxplot of Alpha-diversity Indices

The two main factors taken into account when measuring diversity are richness and evenness. Richness is a measure of the number of different kinds of organisms present in a particular area. Evenness compares the similarity of the population size of each of the species present. There are many different ways to measure the richness and evenness. These measurements are called "estimators" or "indices". Below is a diversity of 3 commonly used indices showing the values for all the samples (dots) and in groups (boxes).

Printed on each graph is the statistical significance p values of the difference between the groups. The significance is calculated using either Kruskal-Wallis test or the Wilcoxon rank sum test, both are non-parametric methods (since microbiome read count data are considered non-normally distributed) for testing whether samples originate from the same distribution (i.e., no difference between groups). The Kruskal-Wallis test is used to compare three or more independent groups to determine if there are statistically significant differences between their medians. The Wilcoxon Rank Sum test, also known as the Mann-Whitney U test, is used to compare two independent groups to determine if there is a significant difference between their distributions.
The p-value is shown on the top of each graph. A p-value < 0.05 is considered statistically significant between/among the test groups.

 
Alpha Diversity Box Plots for All Groups
 
 
 
 
 
 
 
Alpha Diversity Box Plots for Individual Comparisons at Species level
 
Comparison 1caries_free vs caries vs controlView in PDFView in SVG
Comparison 2females vs malesView in PDFView in SVG
 
The above comparisons are at the species-level. Comparisons of other taxonomy levels, from phylum to genus, are also available:
 
 
 
 

Group Significance Evaluation of Alpha-diversity Indices with QIIME2

The above comparisons and significance tests were done under the R environment. For compasison (also because this was included in the pipeline early on) we also use the Kruskal Wallis H test provided the "alpha-group-significance" fucntion in the QIIME 2 "diversity" package. As mentioned above, Kruskal Wallis test is the non-parametric alternative to the One Way ANOVA. Non-parametric means that the test doesn’t assume your data comes from a particular distribution. The H test is used when the assumptions for ANOVA aren’t met (assumption of normality). It is sometimes called the one-way ANOVA on ranks, as the ranks of the data values are used in the test rather than the actual data points. The H test determines whether the medians of two or more groups are different.

Below are the Kruskal Wallis H test results for each comparison based on three different alpha diversity measures: 1) Observed species (features), 2) Shannon index, and 3) Simpson index.

 
 
Comparison 1.caries_free vs caries vs controlObserved FeaturesShannon IndexSimpson Index
Comparison 2.females vs malesObserved FeaturesShannon IndexSimpson Index
 
 

IX. Analysis - Beta Diversity

 

NMDS and PCoA Plots

Beta diversity compares the similarity (or dissimilarity) of microbial profiles between different groups of samples. There are many different similarity/dissimilarity metrics [8]. In general, they can be quantitative (using sequence abundance, e.g., Bray-Curtis or weighted UniFrac) or binary (considering only presence-absence of sequences, e.g., binary Jaccard or unweighted UniFrac). They can be even based on phylogeny (e.g., UniFrac metrics) or not (non-UniFrac metrics, such as Bray-Curtis, etc.).

For microbiome studies, species profiles of samples can be compared with the Bray-Curtis dissimilarity, which is based on the count data type. The pair-wise Bray-Curtis dissimilarity matrix of all samples can then be subject to either multi-dimensional scaling (MDS, also known as PCoA) or non-metric MDS (NMDS).

MDS/PCoA is a scaling or ordination method that starts with a matrix of similarities or dissimilarities between a set of samples and aims to produce a low-dimensional graphical plot of the data in such a way that distances between points in the plot are close to original dissimilarities.

NMDS is similar to MDS, however it does not use the dissimilarities data, instead it converts them into the ranks and use these ranks in the calculation.

In our beta diversity analysis, Bray-Curtis dissimilarity matrix was first calculated and then plotted by the PCoA and NMDS separately. Below are beta diveristy results for all groups together:

References:

  1. Plantinga, AM, Wu, MC (2021). Beta Diversity and Distance-Based Analysis of Microbiome Data. In: Datta, S., Guha, S. (eds) Statistical Analysis of Microbiome Data. Frontiers in Probability and the Statistical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-73351-3_5

 
 
NMDS and PCoA Plots for All Groups
 
 
 
 
 

The above PCoA and NMDS plots are based on count data. The count data can also be transformed into centered log ratio (CLR) for each species. The CLR data is no longer count data and cannot be used in Bray-Curtis dissimilarity calculation. Instead CLR can be compared with Euclidean distances. When CLR data are compared by Euclidean distance, the distance is also called Aitchison distance.

Below are the NMDS and PCoA plots of the Aitchison distances of the samples:

 
 
 
 
 
 
 
NMDS and PCoA Plots for Individual Comparisons at Species level
 
 
Comparison No.Comparison NameNMDAPCoA
Bray-CurtisCLR EuclideanBray-CurtisCLR Euclidean
Comparison 1caries_free vs caries vs controlPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 2females vs malesPDFSVGPDFSVGPDFSVGPDFSVG
 
 
 
 
 
 

Interactive 3D PCoA Plots - Bray-Curtis Dissimilarity

 
 
 

Interactive 3D PCoA Plots - Euclidean Distance

 
 
 

Interactive 3D PCoA Plots - Correlation Coefficients

 
 
 

Group Significance of Beta-diversity Indices

To test whether the between-group dissimilarities are significantly greater than the within-group dissimilarities, the "beta-group-significance" function provided in the QIIME 2 "diversity" package was used with PERMANOVA (permutational multivariate analysis of variance) as the group significant testing method.

Three beta diversity matrics were used: 1) Bray–Curtis dissimilarity 2) Correlation coefficient matrix , and 3) Aitchison distance (Euclidean distance between clr-transformed compositions).

 
 
Comparison 1.caries_free vs caries vs controlBray–CurtisCorrelationAitchison
Comparison 2.females vs malesBray–CurtisCorrelationAitchison
 
 
 

X. Analysis - Differential Abundance

16S rRNA next generation sequencing (NGS) generates a fixed number of reads that reflect the proportion of different species in a sample, i.e., the relative abundance of species, instead of the absolute abundance. In Mathematics, measurements involving probabilities, proportions, percentages, and ppm can all be thought of as compositional data. This makes the microbiome read count data “compositional” (Gloor et al, 2017). In general, compositional data represent parts of a whole which only carry relative information [9].

The problem of microbiome data being compositional arises when comparing two groups of samples for identifying “differentially abundant” species. A species with the same absolute abundance between two conditions, its relative abundances in the two conditions (e.g., percent abundance) can become different if the relative abundance of other species change greatly. This problem can lead to incorrect conclusion in terms of differential abundance for microbial species in the samples.

When studying differential abundance (DA), the current better approach is to transform the read count data into log ratio data. The ratios are calculated between read counts of all species in a sample to a “reference” count (e.g., mean read count of the sample). The log ratio data allow the detection of DA species without being affected by percentage bias mentioned above

In this report, a compositional DA analysis tool “ANCOM” (analysis of composition of microbiomes) was used [10]. ANCOM transforms the count data into log-ratios and thus is more suitable for comparing the composition of microbiomes in two or more populations. "ANCOM" generates a table of features with W-statistics and whether the null hypothesis is rejected. The “W” is the W-statistic, or number of features that a single feature is tested to be significantly different against. Hence the higher the "W" the more statistical sifgnificant that a feature/species is differentially abundant.

References:

  1. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017 Nov 15;8:2224. doi: 10.3389/fmicb.2017.02224. PMID: 29187837; PMCID: PMC5695134.
  2. Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015 May 29;26:27663. doi: 10.3402/mehd.v26.27663. PMID: 26028277; PMCID: PMC4450248.
 
 

ANCOM Differential Abundance Analysis

 
ANCOM Results for Individual Comparisons
Comparison No.Comparison Name
Comparison 1.caries_free vs caries vs control
Comparison 2.females vs males
 
 

ANCOM-BC2 Differential Abundance Analysis

 

Starting with version V1.2, we include the results of ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) (Lin and Peddada 2020) [11]. ANCOM-BC is an updated version of "ANCOM" that:
(a) provides statistically valid test with appropriate p-values,
(b) provides confidence intervals for differential abundance of each taxon,
(c) controls the False Discovery Rate (FDR),
(d) maintains adequate power, and
(e) is computationally simple to implement.

The bias correction (BC) addresses a challenging problem of the bias introduced by differences in the sampling fractions across samples. This bias has been a major hurdle in performing DA analysis of microbiome data. ANCOM-BC estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework.

Starting with version V1.43, ANCOM-BC2 is used instead of ANCOM-BC, So that multiple pairwise directional test can be performed (if there are more than two gorups in a comparison). When performing pairwise directional test, the mixed directional false discover rate (mdFDR) is taken into account. The mdFDR is the combination of false discovery rate due to multiple testing, multiple pairwise comparisons, and directional tests within each pairwise comparison. The mdFDR is adopted from (Guo, Sarkar, and Peddada 2010 [12]; Grandhi, Guo, and Peddada 2016 [13]). For more detail explanation and additional features of ANCOM-BC2 please see author's documentation.

References:

  1. Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.
  2. Guo W, Sarkar SK, Peddada SD. Controlling false discoveries in multidimensional directional decisions, with applications to gene expression data on ordered categories. Biometrics. 2010 Jun;66(2):485-92. doi: 10.1111/j.1541-0420.2009.01292.x. Epub 2009 Jul 23. PMID: 19645703; PMCID: PMC2895927.
  3. Grandhi A, Guo W, Peddada SD. A multiple testing procedure for multi-dimensional pairwise comparisons with application to gene expression studies. BMC Bioinformatics. 2016 Feb 25;17:104. doi: 10.1186/s12859-016-0937-5. PMID: 26917217; PMCID: PMC4768411.
 
 
ANCOM-BC Results for Individual Comparisons
 
Comparison No.Comparison Name
Comparison 1.caries_free vs caries vs control
Comparison 2.females vs males
 
 
 
 
 

LEfSe - Linear Discriminant Analysis Effect Size

LEfSe (Linear Discriminant Analysis Effect Size) is an alternative method to find "organisms, genes, or pathways that consistently explain the differences between two or more microbial communities" (Segata et al., 2011) [14]. Specifically, LEfSe uses rank-based Kruskal-Wallis (KW) sum-rank test to detect features with significant differential (relative) abundance with respect to the class of interest. Since it is rank-based, instead of proportional based, the differential species identified among the comparison groups is less biased (than percent abundance based).

Reference:

  1. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011 Jun 24;12(6):R60. doi: 10.1186/gb-2011-12-6-r60. PMID: 21702898; PMCID: PMC3218848.
 
caries_free vs caries vs control
 
 
 
 
 
 
 
LEfSe Results for All Comparisons
 
Comparison No.Comparison Name
Comparison 1.caries_free vs caries vs control
Comparison 2.females vs males
 
 

XI. Analysis - Heatmap Profile

 

Species vs Sample Abundance Heatmap for All Samples

 
 
 

Heatmaps for Individual Comparisons

 
A) Two-way clustering - clustered on both columns (Samples) and rows (organism)
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1caries_free vs caries vs controlPDFSVGPDFSVGPDFSVG
Comparison 2females vs malesPDFSVGPDFSVGPDFSVG
 
 
B) One-way clustering - clustered on rows (organism) only
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1caries_free vs caries vs controlPDFSVGPDFSVGPDFSVG
Comparison 2females vs malesPDFSVGPDFSVGPDFSVG
 
 
C) No clustering
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1caries_free vs caries vs controlPDFSVGPDFSVGPDFSVG
Comparison 2females vs malesPDFSVGPDFSVGPDFSVG
 
 

XII. Analysis - Network Association

To analyze the co-occurrence or co-exclusion between microbial species among different samples, network correlation analysis tools are usually used for this purpose. However, microbiome count data are compositional. If count data are normalized to the total number of counts in the sample, the data become not independent and traditional statistical metrics (e.g., correlation) for the detection of specie-species relationships can lead to spurious results. In addition, sequencing-based studies typically measure hundreds of OTUs (species) on few samples; thus, inference of OTU-OTU association networks is severely under-powered. Here we use SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues (Kurtz et al., 2015) [15]. SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. SPIEC-EASI provides two algorithms for network inferencing – 1) Meinshausen-Bühlmann's neighborhood selection (MB method) and inverse covariance selection (GLASSO method, i.e., graphical least absolute shrinkage and selection operator). This is fundamentally distinct from SparCC, which essentially estimate pairwise correlations. In addition to these two methods, we provide the results of a third method - SparCC (Sparse Correlations for Compositional Data)(Friedman & Alm 2012)[16], which is also a method for inferring correlations from compositional data. SparCC estimates the linear Pearson correlations between the log-transformed components.

References:

  1. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015 May 7;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226. PMID: 25950956; PMCID: PMC4423992.
  2. Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20. PMID: 23028285; PMCID: PMC3447976.
 

SPIEC-EASI Network Inference by Neighborhood Selection (MB Method)

 

 

 

Association Network Inference by SparCC

 

 

 
 

XIII. Disclaimer

The results of this analysis are for research purpose only. They are not intended to diagnose, treat, cure, or prevent any disease. Forsyth and FOMC are not responsible for use of information provided in this report outside the research area.

 

Copyright FOMC 2025