FOMC Service Report

16S rRNA Gene V1V3 Amplicon Sequencing

Version V1.41

Version History

The Forsyth Institute, Cambridge, MA, USA
September 29, 2022

Project ID: FOMC7142


I. Project Summary

Project FOMC7142 services include NGS sequencing of the V1V3 region of the 16S rRNA gene amplicons from the samples. First and foremost, please download this report, as well as the sequence raw data from the download links provided below. These links will expire after 60 days. We cannot guarantee the availability of your data after 60 days.

Full Bioinformatics analysis service was requested. We provide many analyses, starting from the raw sequence quality and noise filtering, pair reads merging, as well as chimera filtering for the sequences, using the DADA2 denosing algorithm and pipeline.

We also provide many downstream analyses such as taxonomy assignment, alpha and beta diversity analyses, and differential abundance analysis.

For taxonomy assignment, most informative would be the taxonomy barplots. We provide an interactive barplots to show the relative abundance of microbes at different taxonomy levels (from Phylum to species) that you can choose.

If you specify which groups of samples you want to compare for differential abundance, we provide both ANCOM and LEfSe differential abundance analysis.

 

II. Workflow Checklist

1.Sample Received
2.Sample Quality Evaluated
3.Sample Prepared for Sequencing
4.Next-Gen Sequencing
5.Sequence Quality Check
6.Absolute Abundance
7.Report and Raw Sequence Data Available for Download
8.Bioinformatics Analysis - Reads Processing (DADA2 Quality Trimming, Denoising, Paired Reads Merging)
9.Bioinformatics Analysis - Reads Taxonomy Assignment
10.Bioinformatics Analysis - Alpha Diversity Analysis
11.Bioinformatics Analysis - Beta Diversity Analysis
12.Bioinformatics Analysis - Differential Abundance Analysis
13.Bioinformatics Analysis - Heatmap Profile
14.Bioinformatics Analysis - Network Association
 

III. NGS Sequencing

The samples were processed and analyzed with the ZymoBIOMICS® Service: Targeted Metagenomic Sequencing (Zymo Research, Irvine, CA).

DNA Extraction: If DNA extraction was performed, one of three different DNA extraction kits was used depending on the sample type and sample volume and were used according to the manufacturer’s instructions, unless otherwise stated. The kit used in this project is marked below:

ZymoBIOMICS® DNA Miniprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS® DNA Microprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS®-96 MagBead DNA Kit (Zymo Research, Irvine, CA)
N/A (DNA Extraction Not Performed)
Elution Volume: 50µL
Additional Notes: NA

Targeted Library Preparation: The DNA samples were prepared for targeted sequencing with the Quick-16S™ NGS Library Prep Kit (Zymo Research, Irvine, CA). These primers were custom designed by Zymo Research to provide the best coverage of the 16S gene while maintaining high sensitivity. The primer sets used in this project are marked below:

Quick-16S™ Primer Set V1-V2 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V1-V3 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V3-V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V6-V8 (Zymo Research, Irvine, CA)
Other: NA
Additional Notes: NA

The sequencing library was prepared using an innovative library preparation process in which PCR reactions were performed in real-time PCR machines to control cycles and therefore limit PCR chimera formation. The final PCR products were quantified with qPCR fluorescence readings and pooled together based on equal molarity. The final pooled library was cleaned up with the Select-a-Size DNA Clean & Concentrator™ (Zymo Research, Irvine, CA), then quantified with TapeStation® (Agilent Technologies, Santa Clara, CA) and Qubit® (Thermo Fisher Scientific, Waltham, WA).

Control Samples: The ZymoBIOMICS® Microbial Community Standard (Zymo Research, Irvine, CA) was used as a positive control for each DNA extraction, if performed. The ZymoBIOMICS® Microbial Community DNA Standard (Zymo Research, Irvine, CA) was used as a positive control for each targeted library preparation. Negative controls (i.e. blank extraction control, blank library preparation control) were included to assess the level of bioburden carried by the wet-lab process.

Sequencing: The final library was sequenced on Illumina® MiSeq™ with a V3 reagent kit (600 cycles). The sequencing was performed with 10% PhiX spike-in.

 

IV. Complete Report Download

The complete report of your project, including all links in this report, can be downloaded by clicking the link provided below. The downloaded file is a compressed ZIP file and once unzipped, open the file “REPORT.html” (may only shown as "REPORT" in your computer) by double clicking it. Your default web browser will open it and you will see the exact content of this report.

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Complete report download link:

To view the report, please follow the following steps:
1.Download the .zip file from the report link above.
2.Extract all the contents of the downloaded .zip file to your desktop.
3.Open the extracted folder and find the "REPORT.html" (may shown as only "REPORT").
4.Open (double-clicking) the REPORT.html file. Your default browser will open the top age of the complete report. Within the report, there are links to view all the analyses performed for the project.

 

V. Raw Sequence Data Download

The raw NGS sequence data is available for download with the link provided below. The data is a compressed ZIP file and can be unzipped to individual sequence files. Since this is a pair-end sequencing, each of your samples is represented by two sequence files, one for READ 1, with the file extension “*_R1.fastq.gz”, another READ 2, with the file extension “*_R1.fastq.gz”. The files are in FASTQ format and are compressed. FASTQ format is a text-based data format for storing both a biological sequence and its corresponding quality scores. Most sequence analysis software will be able to open them. The Sample IDs associated with the R1 and R2 fastq files are listed in the table below:

Sample IDOriginal Sample IDRead 1 File NameRead 2 File Name
F7142.S1015pzr7142_10V3V4_R1.fastq.gzzr7142_10V3V4_R2.fastq.gz
F7142.S1116pzr7142_11V3V4_R1.fastq.gzzr7142_11V3V4_R2.fastq.gz
F7142.S1217pzr7142_12V3V4_R1.fastq.gzzr7142_12V3V4_R2.fastq.gz
F7142.S1318pzr7142_13V3V4_R1.fastq.gzzr7142_13V3V4_R2.fastq.gz
F7142.S1420pzr7142_14V3V4_R1.fastq.gzzr7142_14V3V4_R2.fastq.gz
F7142.S1522pzr7142_15V3V4_R1.fastq.gzzr7142_15V3V4_R2.fastq.gz
F7142.S1624pzr7142_16V3V4_R1.fastq.gzzr7142_16V3V4_R2.fastq.gz
F7142.S1725pzr7142_17V3V4_R1.fastq.gzzr7142_17V3V4_R2.fastq.gz
F7142.S1826pzr7142_18V3V4_R1.fastq.gzzr7142_18V3V4_R2.fastq.gz
F7142.S1927pzr7142_19V3V4_R1.fastq.gzzr7142_19V3V4_R2.fastq.gz
F7142.S011pzr7142_1V3V4_R1.fastq.gzzr7142_1V3V4_R2.fastq.gz
F7142.S2028pzr7142_20V3V4_R1.fastq.gzzr7142_20V3V4_R2.fastq.gz
F7142.S2129pzr7142_21V3V4_R1.fastq.gzzr7142_21V3V4_R2.fastq.gz
F7142.S2230pzr7142_22V3V4_R1.fastq.gzzr7142_22V3V4_R2.fastq.gz
F7142.S2331pzr7142_23V3V4_R1.fastq.gzzr7142_23V3V4_R2.fastq.gz
F7142.S2433pzr7142_24V3V4_R1.fastq.gzzr7142_24V3V4_R2.fastq.gz
F7142.S2534pzr7142_25V3V4_R1.fastq.gzzr7142_25V3V4_R2.fastq.gz
F7142.S2635pzr7142_26V3V4_R1.fastq.gzzr7142_26V3V4_R2.fastq.gz
F7142.S2739pzr7142_27V3V4_R1.fastq.gzzr7142_27V3V4_R2.fastq.gz
F7142.S022pzr7142_2V3V4_R1.fastq.gzzr7142_2V3V4_R2.fastq.gz
F7142.S033pzr7142_3V3V4_R1.fastq.gzzr7142_3V3V4_R2.fastq.gz
F7142.S044pzr7142_4V3V4_R1.fastq.gzzr7142_4V3V4_R2.fastq.gz
F7142.S055pzr7142_5V3V4_R1.fastq.gzzr7142_5V3V4_R2.fastq.gz
F7142.S066pzr7142_6V3V4_R1.fastq.gzzr7142_6V3V4_R2.fastq.gz
F7142.S077pzr7142_7V3V4_R1.fastq.gzzr7142_7V3V4_R2.fastq.gz
F7142.S0810pzr7142_8V3V4_R1.fastq.gzzr7142_8V3V4_R2.fastq.gz
F7142.S0911pzr7142_9V3V4_R1.fastq.gzzr7142_9V3V4_R2.fastq.gz

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Raw sequence data download link:

 

VI. Analysis - DADA2 Read Processing

What is DADA2?

DADA2 is a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. DADA2 identified more real variants and output fewer spurious sequences than other methods.

DADA2’s advantage is that it uses more of the data. The DADA2 error model incorporates quality information, which is ignored by all other methods after filtering. The DADA2 error model incorporates quantitative abundances, whereas most other methods use abundance ranks if they use abundance at all. The DADA2 error model identifies the differences between sequences, eg. A->C, whereas other methods merely count the mismatches. DADA2 can parameterize its error model from the data itself, rather than relying on previous datasets that may or may not reflect the PCR and sequencing protocols used in your study.

DADA2 Publication: Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016 Jul;13(7):581-3. doi: 10.1038/nmeth.3869. Epub 2016 May 23. PMID: 27214047; PMCID: PMC4927377.

DADA2 Software Package is available as an R package at : https://benjjneb.github.io/dada2/index.html

Analysis Procedures:

DADA2 pipeline includes several tools for read quality control, including quality filtering, trimming, denoising, pair merging and chimera filtering. Below are the major processing steps of DADA2:

Step 1. Read trimming based on sequence quality The quality of NGS Illumina sequences often decreases toward the end of the reads. DADA2 allows to trim off the poor quality read ends in order to improve the error model building and pair mergicing performance.

Step 2. Learn the Error Rates The DADA2 algorithm makes use of a parametric error model (err) and every amplicon dataset has a different set of error rates. The learnErrors method learns this error model from the data, by alternating estimation of the error rates and inference of sample composition until they converge on a jointly consistent solution. As in many machine-learning problems, the algorithm must begin with an initial guess, for which the maximum possible error rates in this data are used (the error rates if only the most abundant sequence is correct and all the rest are errors).

Step 3. Infer amplicon sequence variants (ASVs) based on the error model built in previous step. This step is also called sequence "denoising". The outcome of this step is a list of ASVs that are the equivalent of oligonucleotides.

Step 4. Merge paired reads. If the sequencing products are read pairs, DADA2 will merge the R1 and R2 ASVs into single sequences. Merging is performed by aligning the denoised forward reads with the reverse-complement of the corresponding denoised reverse reads, and then constructing the merged “contig” sequences. By default, merged sequences are only output if the forward and reverse reads overlap by at least 12 bases, and are identical to each other in the overlap region (but these conditions can be changed via function arguments).

Step 5. Remove chimera. The core dada method corrects substitution and indel errors, but chimeras remain. Fortunately, the accuracy of sequence variants after denoising makes identifying chimeric ASVs simpler than when dealing with fuzzy OTUs. Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a right-segment from two more abundant “parent” sequences. The frequency of chimeric sequences varies substantially from dataset to dataset, and depends on on factors including experimental procedures and sample complexity.

Results

1. Read Quality Plots NGS sequence analaysis starts with visualizing the quality of the sequencing. Below are the quality plots of the first sample for the R1 and R2 reads separately. In gray-scale is a heat map of the frequency of each quality score at each base position. The mean quality score at each position is shown by the green line, and the quartiles of the quality score distribution by the orange lines. The forward reads are usually of better quality. It is a common practice to trim the last few nucleotides to avoid less well-controlled errors that can arise there. The trimming affects the downstream steps including error model building, merging and chimera calling. FOMC uses an empirical approach to test many combinations of different trim length in order to achieve best final amplicon sequence variants (ASVs), see the next section “Optimal trim length for ASVs”.

Quality plots for all samples:

2. Optimal trim length for ASVs The final number of merged and chimera-filtered ASVs depends on the quality filtering (hence trimming) in the very beginning of the DADA2 pipeline. In order to achieve highest number of ASVs, an empirical approach was used -

  1. Create a random subset of each sample consisting of 5,000 R1 and 5,000 R2 (to reduce computation time)
  2. Trim 10 bases at a time from the ends of both R1 and R2 up to 50 bases
  3. For each combination of trimmed length (e.g., 300x300, 300x290, 290x290 etc), the trimmed reads are subject to the entire DADA2 pipeline for chimera-filtered merged ASVs
  4. The combination with highest percentage of the input reads becoming final ASVs is selected for the complete set of data

Below is the result of such operation, showing ASV percentages of total reads for all trimming combinations (1st Column = R1 lengths in bases; 1st Row = R2 lengths in bases):

R1/R2261251241231
3214.84%19.28%31.91%34.26%
3115.08%22.75%37.83%40.22%
3014.98%22.57%38.01%40.54%
2914.97%23.18%38.41%41.31%
2815.16%23.93%38.95%41.79%
2715.12%24.23%39.55%42.53%

Based on the above result, the trim length combination of R1 = 271 bases and R2 = 231 bases (highlighted red above), was chosen for generating final ASVs for all sequences. This combination generated highest number of merged non-chimeric ASVs and was used for downstream analyses, if requested.

3. Error plots from learning the error rates After DADA2 building the error model for the set of data, it is always worthwhile, as a sanity check if nothing else, to visualize the estimated error rates. The error rates for each possible transition (A→C, A→G, …) are shown below. Points are the observed error rates for each consensus quality score. The black line shows the estimated error rates after convergence of the machine-learning algorithm. The red line shows the error rates expected under the nominal definition of the Q-score. The ideal result would be the estimated error rates (black line) are a good fit to the observed rates (points), and the error rates drop with increased quality as expected.

Forward Read R1 Error Plot


Reverse Read R2 Error Plot

The PDF version of these plots are available here:

 

4. DADA2 Result Summary The table below shows the summary of the DADA2 analysis, tracking paired read counts of each samples for all the steps during DADA2 denoising process - including end-trimming (filtered), denoising (denoisedF, denoisedF), pair merging (merged) and chimera removal (nonchim).

Sample IDF7142.S01F7142.S02F7142.S03F7142.S04F7142.S05F7142.S06F7142.S07F7142.S08F7142.S09F7142.S10F7142.S11F7142.S12F7142.S13F7142.S14F7142.S15F7142.S16F7142.S17F7142.S18F7142.S19F7142.S20F7142.S21F7142.S22F7142.S23F7142.S24F7142.S25F7142.S26F7142.S27Row SumPercentage
input46,99547,76155,22251,86045,29750,55647,04450,86356,18547,61156,76246,33755,82645,21036,44342,66562,71754,32552,52338,29037,28845,77850,62163,32754,41062,26149,2491,353,426100.00%
filtered46,90247,64355,09951,75145,21250,43146,96150,70056,02447,50756,65346,24155,73445,11836,38342,59162,53354,18152,42138,18037,20245,67550,51663,16654,27762,10649,1321,350,33999.77%
denoisedF45,66546,33852,94949,14343,34546,99245,22647,11653,10144,59654,59943,61253,31441,66434,13539,79858,58751,23849,83535,59735,05643,07246,66560,67951,01558,21846,5521,278,10794.43%
denoisedR44,67545,82853,35049,71744,07046,41845,09547,26752,13143,98754,73642,98352,20238,81234,27938,57159,08550,58248,22933,81134,66642,70046,13260,31050,86958,60845,5481,264,66193.44%
merged41,84630,92532,29833,15430,34631,83625,13136,70944,39333,60331,95232,47844,06728,31720,98217,86245,22742,93240,44723,85626,89934,41237,87252,13635,97546,47134,507936,63369.20%
nonchim8,2178,96414,47915,83613,66117,83910,00219,34620,58417,02411,81120,71214,66122,96310,75112,37624,12516,24916,98518,57814,03915,38425,13315,88817,52120,95223,501447,58133.07%

This table can be downloaded as an Excel table below:

 

5. DADA2 Amplicon Sequence Variants (ASVs). A total of 2910 unique merged and chimera-free ASV sequences were identified, and their corresponding read counts for each sample are available in the "ASV Read Count Table" with rows for the ASV sequences and columns for sample. This read count table can be used for microbial profile comparison among different samples and the sequences provided in the table can be used to taxonomy assignment.

 

The table can be downloaded from this link:

 
 

Sample Meta Information

#SampleIDSample NameGroup1Group
F7142.S011pHCControl
F7142.S022pHCControl
F7142.S033pHCControl
F7142.S044pHCControl
F7142.S055pHCControl
F7142.S066pHCControl
F7142.S077pHCControl
F7142.S0810pPPeriodontitis
F7142.S0911pPPeriodontitis
F7142.S1015pPPeriodontitis
F7142.S1116pPPeriodontitis
F7142.S1217pPPeriodontitis
F7142.S1318pPPeriodontitis
F7142.S1420pPPeriodontitis
F7142.S1522pPPeriodontitis
F7142.S1624pPPeriodontitis
F7142.S1725pPPeriodontitis
F7142.S1826pP-PDParkinson
F7142.S1927pP-PDParkinson
F7142.S2028pP-PDParkinson
F7142.S2129pP-PDParkinson
F7142.S2230pP-PDParkinson
F7142.S2331pP-PDParkinson
F7142.S2433pP-PDParkinson
F7142.S2534pP-PDParkinson
F7142.S2635pP-PDParkinson
F7142.S2739pP-PDParkinson
 
 

ASV Read Counts by Samples

#Sample IDRead Count
F7142.S018,217
F7142.S028,964
F7142.S0710,002
F7142.S1510,751
F7142.S1111,811
F7142.S1612,376
F7142.S0513,661
F7142.S2114,039
F7142.S0314,479
F7142.S1314,661
F7142.S2215,384
F7142.S0415,836
F7142.S2415,888
F7142.S1816,249
F7142.S1916,985
F7142.S1017,024
F7142.S2517,521
F7142.S0617,839
F7142.S2018,578
F7142.S0819,346
F7142.S0920,584
F7142.S1220,712
F7142.S2620,952
F7142.S1422,963
F7142.S2723,501
F7142.S1724,125
F7142.S2325,133
 
 
 

VII. Analysis - Read Taxonomy Assignment

Read Taxonomy Assignment - Methods

 

The species-level, open-reference 16S rRNA NGS reads taxonomy assignment pipeline

Version 20210310
 

1. Raw sequences reads in FASTA format were BLASTN-searched against a combined set of 16S rRNA reference sequences. It consists of MOMD (version 0.1), the HOMD (version 15.2 http://www.homd.org/index.php?name=seqDownload&file&type=R ), HOMD 16S rRNA RefSeq Extended Version 1.1 (EXT), GreenGene Gold (GG) (http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/gold_strains_gg16S_aligned.fasta.gz) , and the NCBI 16S rRNA reference sequence set (https://ftp.ncbi.nlm.nih.gov/blast/db/16S_ribosomal_RNA.tar.gz). These sequences were screened and combined to remove short sequences (<1000nt), chimera, duplicated and sub-sequences, as well as sequences with poor taxonomy annotation (e.g., without species information). This process resulted in 1,015 from HOMD V15.22, 495 from EXT, 3,940 from GG and 18,044 from NCBI, a total of 25,120 sequences. Altogether these sequence represent a total of 15,601 oral and non-oral microbial species.

The NCBI BLASTN version 2.7.1+ (Zhang et al, 2000) was used with the default parameters. Reads with ≥ 98% sequence identity to the matched reference and ≥ 90% alignment length (i.e., ≥ 90% of the read length that was aligned to the reference and was used to calculate the sequence percent identity) were classified based on the taxonomy of the reference sequence with highest sequence identity. If a read matched with reference sequences representing more than one species with equal percent identity and alignment length, it was subject to chimera checking with USEARCH program version v8.1.1861 (Edgar 2010). Non-chimeric reads with multi-species best hits were considered valid and were assigned with a unique species notation (e.g., spp) denoting unresolvable multiple species.

2. Unassigned reads (i.e., reads with < 98% identity or < 90% alignment length) were pooled together and reads < 200 bases were removed. The remaining reads were subject to the de novo operational taxonomy unit (OTU) calling and chimera checking using the USEARCH program version v8.1.1861 (Edgar 2010). The de novo OTU calling and chimera checking was done using 98% as the sequence identity cutoff, i.e., the species-level OTU. The output of this step produced species-level de novo clustered OTUs with 98% identity. Representative reads from each of the OTUs/species were then BLASTN-searched against the same reference sequence set again to determine the closest species for these potential novel species. These potential novel species were pooled together with the reads that were signed to specie-level in the previous step, for down-stream analyses.

Reference:
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12. PubMed PMID: 20709691.

3. Designations used in the taxonomy:

	1) Taxonomy levels are indicated by these prefixes:
	
	   k__: domain/kingdom
	   p__: phylum
	   c__: class
	   o__: order
	   f__: family
	   g__: genus  
	   s__: species
	
	   Example: 
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__faecis
		
	2) Unique level identified – known species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__hominis
	
	   The above example shows some reads match to a single species (all levels are unique)
	
	3) Non-unique level identified – known species:

	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__multispecies_spp123_3
	   
	   The above example “s__multispecies_spp123_3” indicates certain reads equally match to 3 species of the 
	   genus Roseburia; the “spp123” is a temporally assigned species ID.
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__multigenus;s__multispecies_spp234_5
	   
	   The above example indicates certain reads match equally to 5 different species, which belong to multiple genera.; 
	   the “spp234” is a temporally assigned species ID.
	
	4) Unique level identified – unknown species, potential novel species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ hominis_nov_97%
	   
	   The above example indicates that some reads have no match to any of the reference sequences with 
	   sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. However this groups 
	   of reads (actually the representative read from a de novo  OTU) has 96% percent identity to 
	   Roseburia hominis, thus this is a potential novel species, closest to Roseburia hominis. 
	   (But they are not the same species).
	
	5) Multiple level identified – unknown species, potential novel species:
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ multispecies_sppn123_3_nov_96%
	
	   The above example indicates that some reads have no match to any of the reference sequences 
	   with sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. 
	   However this groups of reads (actually the representative read from a de novo  OTU) 
	   has 96% percent identity equally to 3 species in Roseburia. Thus this is no single 
	   closest species, instead this group of reads match equally to multiple species at 96%. 
	   Since they have passed chimera check so they represent a novel species. “sppn123” is a 
	   temporary ID for this potential novel species. 

 
4. The taxonomy assignment algorithm is illustrated in this flow char below:
 
 
 
 

Read Taxonomy Assignment - Result Summary *

CodeCategoryMPC=0% (>=1 read)MPC=0.01%(>=44 reads)
ATotal reads447,581447,581
BTotal assigned reads445,099445,099
CAssigned reads in species with read count < MPC0856
DAssigned reads in samples with read count < 50000
ETotal samples2727
FSamples with reads >= 5002727
GSamples with reads < 50000
HTotal assigned reads used for analysis (B-C-D)445,099444,243
IReads assigned to single species326,284325,992
JReads assigned to multiple species93,53693,443
KReads assigned to novel species25,27924,808
LTotal number of species418383
MNumber of single species241232
NNumber of multi-species10097
ONumber of novel species7754
PTotal unassigned reads2,4822,482
QChimeric reads1212
RReads without BLASTN hits7676
SOthers: short, low quality, singletons, etc.2,3942,394
A=B+P=C+D+H+Q+R+S
E=F+G
B=C+D+H
H=I+J+K
L=M+N+O
P=Q+R+S
* MPC = Minimal percent (of all assigned reads) read count per species, species with read count < MPC were removed.
* Samples with reads < 500 were removed from downstream analyses.
* The assignment result from MPC=0.1% was used in the downstream analyses.
 
 
 

Read Taxonomy Assignment - ASV Species-Level Read Counts Table

This table shows the read counts for each sample (columns) and each species identified based on the ASV sequences. The downstream analyses were based on this table.
SPIDTaxonomyF7142.S01F7142.S02F7142.S03F7142.S04F7142.S05F7142.S06F7142.S07F7142.S08F7142.S09F7142.S10F7142.S11F7142.S12F7142.S13F7142.S14F7142.S15F7142.S16F7142.S17F7142.S18F7142.S19F7142.S20F7142.S21F7142.S22F7142.S23F7142.S24F7142.S25F7142.S26F7142.S27
SP1Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;Leptothrix;sp. HMT0250085210922902076100000000000000000000
SP10Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Peptidiphaga;sp. HMT18300000560000000595002820000054100109400
SP101Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Johnsonella;sp. HMT16600000291008451700189207015100000000000
SP11Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIVa];Catonella;morbi00000000000000000000000306000
SP123Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT30000000000000000000059201670029100219
SP124Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;shahii0000000000000015701100000000000
SP127Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT13700000000000000000000000230000
SP128Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_ss_animalis000000000000000093000127100000574
SP13Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT4880000019000000000000000001650000
SP131Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-6];[Eubacterium]_minutum0000000002750000000000000313000
SP132Bacteria;Firmicutes;Clostridia;Clostridiales;Veillonellaceae;Centipeda;sp._Oral_Taxon_B0100000002490000924000032000000000
SP133Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Spirochaetaceae;Treponema;medium00000000000000030700000000000
SP134Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-6];[Eubacterium]_nodatum0000011803271060000223000046423602721130009080
SP135Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;intermedia000014484650992393000108223000000000000629
SP136Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;tannerae000000005755010002760000255581153036657000229
SP137Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;dentium00080900000000000000000000000
SP14Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-4];bacterium HMT36900000223001860000550002890000187003040
SP144Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Alcaligenaceae;Bordetella;trematum000000000010620000000000000000
SP145Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales;Acetobacteraceae;Roseomonas;hibiscisoli00000072700000000000000000000
SP146Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;elongata0000000000057800001060000000000
SP15Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;simiae0000000048000000000000000000
SP16Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidales_[F-2];Bacteroidales_[G-2];sp._Oral_Taxon_27400000001120745004992590110347246000605440182425449425
SP164Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._vincentii000002820000000006125050000000000
SP165Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcus;stomatis000000094133946000000002900000000
SP168Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;Desulfobulbus;sp. HMT0410000000275356002270000031100000004470
SP169Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Spirochaetaceae;Treponema;sp. HMT2570000000732150000000000138002020033078
SP170Bacteria;Synergistetes;Synergistia;Synergistales;Synergistaceae;Fretibacterium;sp. HMT35900000191103328250000000005350004780011770
SP171Bacteria;Tenericutes;Mollicutes;Mycoplasmatales;Mycoplasmataceae;Mycoplasma;salivarium0000000000000000000000005500
SP172Bacteria;Chloroflexi;Anaerolineae;Anaerolineales;Anaerolineaceae;Anaerolineae_[G-1];bacterium HMT4390000000083205000001400000014839903490
SP175Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT32400000000000000000000000037800
SP176Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT13400000000238000008300000765973760000
SP177Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;gerencseriae00000000013540000000000037100000
SP178Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;maculosa0000000004390970250000026200000000
SP179Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Parvimonas;micra0000000019500000008422903039001820082
SP18Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Lautropia;mirabilis2593281000000000400273381000019000000
SP180Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT31400000000000000001167021908300039000
SP181Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;pasteri000005090000022100107000026000000021
SP182Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT3480000000000033000000002790000000
SP183Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-9];[Eubacterium]_brachy00000690028400000065048504743135812434716371
SP19Bacteria;Synergistetes;Synergistia;Synergistales;Dethiosulfovibrionaceae;Pyramidobacter;piscolens000000000000000000000001757000
SP194Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oralis0001354000000000005900000009100500
SP198Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Spirochaetaceae;Treponema;sp. HMT258000000001580000000000000890000
SP199Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oulorum000000000000000012900299003715600451
SP2Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Peptoniphilaceae_[G-1];bacterium HMT1130000000000002000000809204000046103310
SP20Bacteria;Spirochaetes;Spirochaetes;Spirochaetales;Spirochaetaceae;Treponema;socranskii00000448038416210970080081701095354646122902971249506701393539430
SP200Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;concisus000000000000046200476239991840000000
SP201Bacteria;Firmicutes;Clostridia;Clostridiales;Veillonellaceae;Dialister;pneumosintes0000000000000000082002790157000604
SP202Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas;nitrititolerans00166000000000000000000000000
SP203Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT1260000000368000002370000032700464000297
SP204Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;artemidis0000036500001190000000000000200000
SP207Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Kingella;oralis0000024700000239006950000000001420163
SP208Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;gingivalis00000218000000000000000000000
SP209Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Spirochaetaceae;Treponema;sp. HMT25300000000000000000000000007110
SP21Bacteria;Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;Cardiobacterium;hominis000003760000012070000000007900000
SP211Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT317000068000004270543225000262012716392600006721461262
SP212Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Corynebacteriaceae;Corynebacterium;matruchotii000004640139000227922800406901327055405050012400
SP213Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT91200000151000000000000000000000
SP214Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;enoeca000626000000000280000000000000
SP215Bacteria;Firmicutes;Clostridia;Clostridiales;Clostridiales_[F];Clostridiales_[G];sp._Oral_Taxon_G7400000000780006782000882000009002650
SP216Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;lecithinolyticum000001410016500037600004750000000348156
SP217Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT3380000011500000000224731460000490019800
SP218Bacteria;Spirochaetes;Spirochaetes;Spirochaetales;Spirochaetaceae;Treponema;maltophilum0000000255040000000132322271000007400
SP219Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminococcaceae_[G-1];bacterium HMT0750000000200000000006025000001600
SP222Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Spirochaetaceae;Treponema;sp. HMT238000000007920000002360000000002470
SP227Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Stomatobaculum;longum00000000000000000001580000000
SP229Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT32300000260000000000000000000000
SP230Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._animalis0000000023400007280000000000000
SP231Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp._Oral_Taxon_B570000000900780004220000306000249000492
SP232Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT47300000001420000046300000000000061
SP233Bacteria;Firmicutes;Mollicutes;Mycoplasmatales;Mycoplasmataceae;Mycoplasma;faucium00000860682010000001000031000134049158130
SP234Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;micans0000024500000121010000000130000001370
SP236Bacteria;Synergistetes;Synergistia;Synergistales;Synergistaceae;Fretibacterium;sp. HMT358000000007760000000000000480002180
SP237Bacteria;Synergistetes;Synergistia;Synergistales;Synergistaceae;Fretibacterium;sp. HMT3620000016301091000000047900000000000
SP239Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Butyrivibrio;sp. HMT080000000000000109570000000000000
SP240Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonellaceae_[G-1];bacterium HMT14500000001340000000000000000000
SP241Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT4980000000000000000005890000024300
SP242Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonella;denticariosi00000000000000233000000000000
SP243Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;sanguinis01100000000000000000000000000
SP244Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT41700000000000000000005470000000
SP245Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-3];bacterium HMT35100000000000930000220034200790000
SP25Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-5];[Eubacterium]_saphenum0000000024199009949400000000776000127
SP252Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;parainfluenzae8068393100000000000318000000000000
SP253Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;morbillorum00006691130213000000001470000000000
SP255Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;paraphrophilus0000000000026800325000000000000
SP256Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;sp. HMT5130000014100000000000001210000000
SP26Bacteria;Bacteroidetes;Bacteroides;Bacteroidales;Prevotellaceae;Prevotella;sp._Oral_Taxon_H5900000000000008270000000000000
SP261Bacteria;Actinobacteria;Actinomycetia;Propionibacteriales;Propionibacteriaceae;Arachnia;propionica000000000000000111400000000000
SP264Bacteria;Firmicutes;Clostridia;Clostridiales;Veillonellaceae;Dialister;invisus00040400004470009579068000000033154100
SP265Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;flueggei0000000000000000000002932130000
SP269Bacteria;Proteobacteria;Alphaproteobacteria;Hyphomicrobiales;Lichenibacteriaceae;Lichenibacterium;ramalinae00000000000264000000000000000
SP27Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;nigrescens00072700000204000734006070855782604193550630816258496
SP270Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT86900000000000827000000000000000
SP271Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Spirochaetaceae;Treponema;sp. HMT23400000000000000000000000006340
SP272Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-4];bacterium HMT3550000000010900000000000001290000
SP275Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Centipeda;periodontii0000000000000000345000000031900
SP276Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT21800000000000000000026000000000
SP279Bacteria;Firmicutes;Clostridia;Clostridiales;Veillonellaceae;Veillonellaceae_[G-1];sp._Oral_Taxon_G4000000000000013484700000039820000000
SP280Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Tannerella;sp. HMT286000000000005700000004980000000
SP281Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Catonella;sp. HMT4510000000363000000014400000000000
SP282Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;shahii00000000018700000000000000000
SP283Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sputigena00000345000001710078000000000000
SP284Bacteria;Bacteroidetes;Bacteroidetes_[C-1];Bacteroidetes_[O-1];Bacteroidetes_[F-1];Bacteroidetes_[G-5];bacterium HMT505000003120303000000000000002230000
SP285Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnospiraceae_[G-3];bacterium HMT100000000000000005701520000000000
SP286Bacteria;Firmicutes;Clostridia;Clostridiales;Syntrophomonadaceae_[VIII];Syntrophomonadaceae_[VIII][G-1];bacterium HMT435000000000000228252000019500000000
SP287Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Schaalia;meyeri000000102400000000000000000000
SP288Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroidaceae_[G-1];bacterium HMT272000000000000090000032000898890710
SP289Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT14600000006570349000489000000004390000
SP293Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;granulosa00000000000283000007301950000000
SP294Bacteria;Bacteroidetes;Bacteroidetes_[C-1];Bacteroidetes_[O-1];Bacteroidetes_[F-1];Bacteroidetes_[G-5];bacterium HMT511000001890015117600239117001450147000328005560
SP296Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT41200000000190000000000000000000
SP297Bacteria;Proteobacteria;Alphaproteobacteria;Hyphomicrobiales;Methylobacteriaceae;Methylobacterium;hispanicum00492000000000000000000000000
SP298Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonellaceae_[G-1];bacterium HMT91800000000000000000000001190000
SP299Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Moraxellaceae;Acinetobacter;sp._Oral_Taxon_C1300000000001050000000000000000
SP3Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;actinomycetemcomitans00000000427000000000000000000
SP300Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;pharyngis00000000000000000000000000134
SP301Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Anaeroglobus;geminatus000000000000000063000614057051300232
SP302Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;saburreum00000000000000000002460000000
SP304Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;sp. HMT458000000000000047004075000000000
SP307Bacteria;Absconditabacteria_(SR1);Absconditabacteria_(SR1)_[C-1];Absconditabacteria_(SR1)_[O-1];Absconditabacteria_(SR1)_[F-1];Absconditabacteria_(SR1)_[G-1];bacterium HMT345000000000000026200000310000000
SP309Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-1];[Eubacterium]_infirmum000000000000000000392910014401460331
SP31Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;fusca00000000825000000000000000000
SP310Bacteria;Bacteroidetes;Bacteroidetes_[C-1];Bacteroidetes_[O-1];Bacteroidetes_[F-1];Bacteroidetes_[G-3];bacterium HMT5030000012001750000000000000000000
SP311Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;koreensis00000000000000000000000114000
SP312Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT30400000000000000000000003070000
SP313Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Spirochaetaceae;Treponema;sp. HMT2310000000001700000000121016400001250207
SP314Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;sp. HMT0440000000000000000000000000099
SP315Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;sp. HMT3700000000036300008800000000000000
SP316Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;baroniae00000000000000000000003580000
SP317Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;leadbetteri15891000228000004080000036801330000000
SP318Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Spirochaetaceae;Treponema;sp. HMT23500000001910000000000000000000
SP319Bacteria;Proteobacteria;Betaproteobacteria;Rhodocyclales;Rhodocyclaceae;Propionivibrio;sp._Oral_Taxon_C3300000000046009500000000000000
SP32Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Filifactor;alocis00000670543238000306002671732413520003090110617194
SP320Bacteria;Firmicutes;Clostridia;Clostridiales;Eubacterium;Eubacterium_[XI][G];sp._Oral_Taxon_B6000000000000008800003900000000
SP321Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonellaceae_[G-1];bacterium HMT15500000000000000002580533368000027400
SP323Bacteria;Firmicutes;Clostridia;Clostridiales;Peptococcaceae;Peptococcus;sp. HMT167000003605111600000000000021800000
SP326Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Tannerella;sp. HMT80800000000000000002050000000000
SP327Bacteria;Firmicutes;Erysipelotrichi;Erysipelotrichales;Erysipelotrichaceae;Solobacterium;moorei0000157600000000000000000077000
SP328Bacteria;Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus;cecorum000105500000000000000000000000
SP329Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas;aeruginosa00000051100000000000000000000
SP33Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;gingivalis0000000241123400012341180029610735381122002250934000
SP330Bacteria;Spirochaetes;Spirochaetes;Spirochaetales;Spirochaetaceae;Treponema;parvum000000000630000000000004600680
SP331Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT47500000136000000000000000000000
SP334Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT31500000000016700000000000000000
SP335Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Bergeyella;sp. HMT3220860000000002320000600000000000
SP34Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;gordonii0000000000013100000000000000223
SP340Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT952000000000310001840032700288000000237
SP341Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT3080570000000000000000000000000
SP342Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;subflava02550000000004800002760000000000
SP343Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;intermedius00000000000000482000000000000
SP344Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;dentocariosa0917000000000299000000000000000
SP347Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Eikenella;corrodens000003110000000000000001380000208
SP348Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonellaceae_[G-1];bacterium HMT1290000000004810020531800143000000000309
SP35Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-2];Saccharibacteria_(TM7)_[G-5];bacterium HMT356000001300000001880006509290004400138595165
SP351Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT2120000023700000312000000000000000
SP356Bacteria;Bacteroidetes;Bacteroidetes_[C-1];Bacteroidetes_[O-1];Bacteroidetes_[F-1];Bacteroidetes_[G-3];bacterium HMT2800000000787600000000228000026919101360
SP357Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT91900000000057200000000000000000
SP358Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT30100000000000001840000000000000
SP359Bacteria;Bacteroidetes;Bacteroides;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._Oral_Taxon_B940000000000000000000122000000204
SP36Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;endodontalis00044071407446570001962370242018600047477405552940
SP361Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;hominis000000000005530000000000048000
SP362Bacteria;Bacteroidetes;Bacteroidetes_[C-1];Bacteroidetes_[O-1];Bacteroidetes_[F-1];Bacteroidetes_[G-3];bacterium HMT36500000000000000000000000004000
SP363Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;rava00000580000000000000510576214700236
SP364Bacteria;Firmicutes;Clostridia;Clostridiales;Eubacteriaceae_[XV];Pseudoramibacter;alactolyticus00000000039600000001940000051000
SP365Bacteria;Bacteroidetes;Bacteroides;Bacteroidales;Prevotellaceae;Prevotella;sp._Oral_Taxon_B6200000000000000000000001680000
SP380Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Spirochaetaceae;Treponema;sp. HMT27000000900000000123000002500003000
SP381Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Stomatobaculum;sp. HMT37300000000000000000000000001210
SP382Bacteria;Bacteroidetes;Bacteroidetes_[C-1];Bacteroidetes_[O-1];Bacteroidetes_[F-1];Bacteroidetes_[G-5];bacterium HMT50700000000000000000000000003930
SP387Bacteria;Bacteroidetes;Bacteroidetes_[C-2];Bacteroidetes_[O-2];Bacteroidetes_[F-2];Bacteroidetes_[G-6];bacterium HMT51600000000810000152000010600000000
SP388Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-2];bacterium HMT09100000000000000000160000000058
SP389Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT44300000000339000000000000000000
SP394Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;naeslundii01550000000000000000000000000
SP395Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT91300000000000000000000000163000
SP4Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;anginosus00013250000000000002540000000000
SP400Bacteria;Firmicutes;Clostridia;Clostridiales;Veillonellaceae;Selenomonas;sp._Oral_Taxon_H630000000003510000000000000022700
SP401Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Johnsonella;ignava00000000000176000000000000000
SP402Bacteria;Firmicutes;Mollicutes;Mollicutes_[O-2];Mollicutes_[F-2];Mollicutes_[G-2];bacterium HMT9060000000000000000000000690000
SP403Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-1];bacterium HMT383000000000000000008700000216000
SP407Archaea;Euryarchaeota;Methanobacteria;Methanobacteriales;Methanobacteriaceae;Methanobrevibacter;oralis0000000085000000000000000000
SP41Bacteria;Synergistetes;Synergistia;Synergistales;Synergistaceae;Fretibacterium;sp. HMT3600000000001474002493116700019120061011519960000
SP410Bacteria;Firmicutes;Erysipelotrichi;Erysipelotrichales;Erysipelotrichaceae;Bulleidia;extructa00000000000000000000000000139
SP411Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonellaceae_[G-1];bacterium HMT48300000001900000000000000000000
SP412Bacteria;Fusobacteria;Fusobacteria;Fusobacteria_[O];Fusobacteria_[F];Fusobacteria_[G-1];sp._Oral_Taxon_A7100000000000000014900000000000
SP413Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-2];bacterium HMT35000000000000000000000001710000
SP414Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;multiformis00000000000000000066700000000
SP415Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;lactarius00000000000000000000000000262
SP416Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;wadei00000000000000000000018700000
SP417Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Kingella;denitrificans00000000000283000000000000000
SP418Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;influenzae00000000000382000000000000000
SP419Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;heparinolyticus00000000000017100000000000000
SP42Bacteria;Actinobacteria;Actinomycetia;Propionibacteriales;Nocardioidaceae;Nocardioides;dilutus00000000008070000000000000000
SP424Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Bergeyella;sp. HMT20601050000000000000000000000000
SP43Bacteria;Firmicutes;Clostridia;Clostridiales;Veillonellaceae;Veillonella;parvula65200000000000016474701064429079108880000766
SP45Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT336000000000305000000277000000015700
SP46Bacteria;Firmicutes;Clostridia;Clostridiales;Veillonellaceae;Selenomonas;dianae0000000005830006970000000000000
SP47Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-5];bacterium HMT4930000000107000004840000000000000
SP5Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Commamonadaceae;Acidovorax;temperans780644077605320001502249000000000000000
SP52Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Spirochaetaceae;Treponema;amylovorum0000000000000000003296900000037
SP53Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonellaceae_[G-1];bacterium HMT1350000000000000000000000108001120
SP54Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT347000000000000006270600000000000
SP59Bacteria;Firmicutes;Clostridia;Clostridiales;Clostridiales_[F-1];Clostridiales_[F-1][G-1];bacterium HMT0930000000782240000000000000125001210
SP6Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT3460000050901150000152000960374145103043501892290
SP60Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae[14];Catonella;sp._Oral_Taxon_B060000000000000344000000119000000
SP61Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;pleuritidis00000469000000000181037609800121100710484
SP62Bacteria;Firmicutes;Bacilli;Lactobacillales;Aerococcaceae;Abiotrophia;defectiva037600000000000063000000000000
SP63Bacteria;Spirochaetes;Spirochaetes;Spirochaetales;Spirochaetaceae;Treponema;denticola0000026407916132880013481120269751026451004013776425587355
SP64Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Moraxellaceae;Acinetobacter;sp._Oral_Taxon_A58335225353729200000084000000000000000
SP65Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Spirochaetaceae;Treponema;sp. HMT237000003230852693000522170022831603363620014500497999286
SP66Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingobium;yanoikuyae1630233020203750004770000000000000000
SP67Bacteria;Synergistetes;Synergistia;Synergistales;Synergistaceae;Fretibacterium;sp. HMT3610000000722060000000002440005290000
SP68Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Oxalobacteraceae;Massilia;timonae00078800000000000000000000000
SP69Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;massiliensis00000000000606000000000000000
SP7Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Moraxellaceae;Acinetobacter;johnsonii01311720001180047114000000000000039000
SP72Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT3490000000000000284004383600051932499000
SP73Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oris00000250000000001022067711604181364109009237690915
SP74Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Tannerella;forsythia0000000256160550015800164457474367003693303371143960
SP75Bacteria;Synergistetes;Synergistetes_[C-1];Synergistetes_[O-1];Synergistetes_[F-2];Fretibacterium;fastidiosum0000075902396270012128127900029244108720125503661203170
SP76Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingomonas;oryziterrae000000000010120000000000000000
SP77Bacteria;Actinobacteria;Actinobacteria;Corynebacteriales;Corynebacteriaceae;Corynebacterium;durum000000000001554000000000000000
SP78Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;noxia000000000339000000754007410000200800
SP8Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;melaninogenica3280000000090000119189000037226300000150
SP82Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT29200000000000000000019204610149011700
SP83Bacteria;Bacteroidetes;Bacteroides;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._Oral_Taxon_B43000000020100000375000000010800000
SP84Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp. HMT2780000000000011301471480710034504600000
SP85Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT170031910000000000000000000000000
SP86Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sputigena510000006658828120006710136697012721754197862490110389174262039
SP87Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;gracilis000000000477036399466880451906326215518113621671163630606
SP89Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;hwasookii0000000000010970251000001810000000
SP9Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas;mendocina00125000000000000000000000000
SP90Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Tannerella;sp. HMT9160000020900000007900000000000000
SP91Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sanguinis088000000000000291000000000000
SP93Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnospiraceae_[G-8];bacterium HMT5000000018406602310002181010154248034105703280154385106
SP94Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;denticola000000000000000000023667063001380000
SPN1Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Azomonas;agilis_nov_89.103%00541000000000000000000000000
SPN10Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT346 nov_97.968%000000020600005160002670283364000000274
SPN11Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Dysgonomonadaceae;Proteiniphilum;acetatigenes_nov_90.889%00000000000025000000000000000
SPN12Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales;Acetobacteraceae;Endobacter;medicaginis_nov_96.364%00000000000217000000000000000
SPN13Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;nigrescens_nov_96.739%00000360191400064006700000000000
SPN14Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Spirochaetaceae;Treponema;sp. HMT927 nov_94.839%00000134058636200000000000000056500
SPN15Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT317 nov_97.831%00000000000000001990000000000
SPN16Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-3];bacterium HMT351 nov_94.843%00000000000001970000000000000
SPN17Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-6];[Eubacterium]_nodatum_nov_92.568%000000004100000000000000001300
SPN18Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;intermedia_nov_96.963%000000000000000000430000001190
SPN19Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIVa];Lachnospiraceae_[G];sp._Oral_Taxon_G33_nov_95.260%00000001570000000000000000000
SPN2Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;dentocariosa_nov_93.034%04210000000000000000000000000
SPN20Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-5];bacterium HMT493 nov_97.968%00000000000001550000000000000
SPN21Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT488 nov_97.065%00008610000000000000000000000
SPN22Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Eikenella;corrodens_nov_97.854%00000000014700000000000000000
SPN23Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Peptoniphilaceae_[G-2];bacterium HMT790 nov_93.394%00000001400000000000000000000
SPN24Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Tannerella;forsythia_nov_95.671%00000000000058000000000078000
SPN25Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;maculosa_nov_97.826%00000001280000000000000000000
SPN26Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Spirochaetaceae;Treponema;sp. HMT257 nov_97.854%00000000000001270000000000000
SPN27Bacteria;Spirochaetes;Spirochaetes;Spirochaetales;Spirochaetaceae;Treponema;sp._Oral_Taxon_G53_nov_96.368%00000000000000000000009600028
SPN28Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT869 nov_97.743%00000000000000000000000122000
SPN29Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Moraxellaceae;Acinetobacter;sp._Oral_Taxon_A58_nov_97.859%00102000000000000000000000000
SPN3Bacteria;Bacteroidetes;Bacteroides;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._Oral_Taxon_B43_nov_97.619%000000000001804000000000000000
SPN30Bacteria;Actinobacteria;Actinomycetia;Propionibacteriales;Propionibacteriaceae;Arachnia;propionica_nov_97.768%0000000000000004933180000000000
SPN31Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Phocea;massiliensis_nov_91.216%00000000000000000000001020000
SPN32Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-3];bacterium HMT351 nov_97.072%0000000000000940000000000000
SPN33Bacteria;Acidobacteria;Acidobacteriia;Acidobacteriales;Acidobacteriaceae;Bryocella;elongata_nov_96.591%0000000000093000000000000000
SPN34Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Commamonadaceae;Acidovorax;temperans_nov_91.006%0000000000790000000000000000
SPN35Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;Curvibacter;fontanus_nov_97.645%000120600000000000000000000000
SPN36Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;enoeca_nov_97.826%0000000000000720000000000000
SPN37Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-4];bacterium HMT369 nov_92.568%0000000000006400000000000000
SPN38Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT417 nov_93.694%0000000000000610000000000000
SPN39Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Tannerella;forsythia_nov_97.609%0000000000000000000000000530
SPN4Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIVa];Lachnospiraceae_[G];sp._Oral_Taxon_G33_nov_97.738%00000000000000000000000004170
SPN40Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT317 nov_97.831%00000000000000000000008070000
SPN41Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;Dongia;soli_nov_87.557%0000000000000000000046000000
SPN46Bacteria;Chloroflexi;Caldilineae;Caldilineales;Caldilineaceae;Litorilinea;aerophila_nov_92.777%000119600000000000000000000000
SPN5Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT473 nov_97.397%00000000000004070000000000000
SPN51Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales;Roseobacteraceae;Rubellimicrobium;thermophilum_nov_95.692%00715000000000000000000000000
SPN56Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Williamwhitmaniaceae;Williamwhitmania;taraxaci_nov_80.687%000000000000000000000115500000
SPN6Bacteria;Firmicutes;Bacilli;Bacillales;Paenibacillaceae;Brevibacillus;fluminis_nov_96.989%00003890000000000000000000000
SPN60Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Muribaculum;intestinale_nov_92.857%00000069300000000000000000000
SPN67Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingosinicellaceae;Sphingosinicella;cucumeris_nov_96.136%00898000000000000000000000000
SPN68Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sputigena_nov_96.352%0000000291000000000000003320000
SPN69Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales;Azospirillaceae;Nitrospirillum;amazonense_nov_96.825%00000000005730000000000000000
SPN7Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;enoeca_nov_97.609%00037400000000000000000000000
SPN70Bacteria;Deinococcus-Thermus;Deinococci;Trueperales;Trueperaceae;Truepera;radiovictrix_nov_94.305%00557000000000000000000000000
SPN8Bacteria;Actinobacteria;Actinomycetia;Propionibacteriales;Nocardioidaceae;Nocardioides;dilutus_nov_97.802%00000000002940000000000000000
SPN9Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Spirochaetaceae;Treponema;sp. HMT262 nov_97.634%0000000000000000000121000016700
SPP1Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp1_500000145000000000036000000057000
SPP10Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIVa];Catonella;multispecies_spp10_2000001990045316700000001270003330000658
SPP100Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;multispecies_spp100_20000000220002600434003970000000000
SPP11Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp11_20062100000000000000000048300000
SPP12Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;multispecies_spp12_200000000000000000000000602050192
SPP13Bacteria;Firmicutes;multiclass;multiorder;Veillonellaceae;Mitsuokella;multispecies_spp13_200000000000000000035300000000
SPP14Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp14_300000000000000000000130000000
SPP15Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp15_2000938000045700000004350051611330002290818
SPP16Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp16_200000000000000000153000000000
SPP17Bacteria;Firmicutes;multiclass;multiorder;multifamily;multigenus;multispecies_spp17_200000000000219000000000000000
SPP18Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Spirochaetaceae;Treponema;multispecies_spp18_200000000000000000000000001870
SPP19Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;multispecies_spp19_20000000274000000000026000000000
SPP2Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp2_400000000000000000000000000452
SPP20Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;multispecies_spp20_20000000610000004570322000033700000
SPP21Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];multigenus;multispecies_spp21_200000120008900000000000000000229
SPP22Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];multigenus;multispecies_spp22_200000000000007870000000000000
SPP23Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Bradyrhizobiaceae;multigenus;multispecies_spp23_1700024300000000000000000000000
SPP24Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp24_300000000146000000000000000000
SPP25Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp25_20000022100034100004220193242000002291900
SPP26Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;multispecies_spp26_229512070000000000000002330000000050
SPP27Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;multispecies_spp27_20000000000000522002390089000000152
SPP28Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Lautropia;multispecies_spp28_256400000000002280004651970000000000
SPP29Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp29_400000000000000000000000232000
SPP3Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp3_50000000000000000000000009700
SPP30Bacteria;Firmicutes;multiclass;Clostridiales;Veillonellaceae;Veillonella;multispecies_spp30_3000000004980000074000000000000
SPP31Bacteria;Firmicutes;multiclass;Veillonellales;Veillonellaceae;Veillonella;multispecies_spp31_20000000000000000417000000000185
SPP32Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;multispecies_spp32_537000000000004170036010727895000000000243
SPP33Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;multispecies_spp33_2000004740000053000000000000000
SPP34Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;multispecies_spp34_30000000104000260015016000004660000000
SPP35Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;multifamily;multigenus;multispecies_spp35_200002950000000000000000000000
SPP36Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;multispecies_spp36_200000000000000000000000000350
SPP37Bacteria;Firmicutes;Clostridia;multiorder;multifamily;multigenus;multispecies_spp37_200000111000000000000000000000
SPP38Bacteria;Firmicutes;Clostridia;multiorder;multifamily;multigenus;multispecies_spp38_30000614001250179027200175019399000000000
SPP4Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp4_200000124017950000000417000003849210000
SPP40Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp40_2545487495000000000000000000000000
SPP41Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingomonas;multispecies_spp41_200000029100000000000000000000
SPP42Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas;multispecies_spp42_600070400000000000000000000000
SPP43Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;multispecies_spp43_200000000000000021100000000000
SPP44Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;multispecies_spp44_200000000000000000000000000196
SPP45Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Paraburkholderia;multispecies_spp45_3002000349046300000000000000000000
SPP46Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp46_20002500000000000083000000000375
SPP47Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;multispecies_spp47_200000000000100107000002920000000
SPP48Bacteria;Synergistetes;Synergistia;Synergistales;Synergistaceae;Fretibacterium;multispecies_spp48_200000000000000000045200000018510
SPP49Bacteria;Proteobacteria;Alphaproteobacteria;Hyphomicrobiales;Methylobacteriaceae;Methylobacterium;multispecies_spp49_300219000000000000000000000000
SPP5Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp5_3000003950064800000000000000057100
SPP50Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp50_200000004110000000000000000000
SPP51Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp51_400000000000000000000000000410
SPP52Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;multispecies_spp52_2840000446000000000059000001070000
SPP53Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;multispecies_spp53_200000000000000071300000000000
SPP54Bacteria;Actinobacteria;multiclass;multiorder;multifamily;multigenus;multispecies_spp54_400042000000000000000000007000
SPP55Bacteria;Deinococcus-Thermus;Deinococci;Thermales;Thermaceae;Meiothermus;multispecies_spp55_200006910000000000000000000000
SPP56Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Propionibacteriaceae;multigenus;multispecies_spp56_30079003290000000000000000000000
SPP57Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIVa];Oribacterium;multispecies_spp57_200000000000082237002440001993960000276
SPP58Bacteria;Firmicutes;Clostridia;multiorder;Lachnospiraceae_[XIV];Lachnoanaerobaculum;multispecies_spp58_2225000000000025900216000000000000
SPP59Bacteria;Firmicutes;multiclass;Veillonellales;Veillonellaceae;Veillonellaceae_[G-1];multispecies_spp59_300000000000000001630000000000
SPP6Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp6_200000000019900000010174000000000
SPP60Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;multispecies_spp60_20000000000000000000007300000
SPP61Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp61_3000000061300009730000055100869054905610
SPP62Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp62_418900000000000000000061106400000
SPP63Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas;multispecies_spp63_2001024000105200000000000000000000
SPP64Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;multispecies_spp64_20000000000000890000000000000
SPP65Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;multispecies_spp65_300000000000088000000006600000
SPP66Bacteria;Firmicutes;Clostridia;Clostridiales;multifamily;Eubacterium_[XIVa][G-1];saburreum00000000000000001980000000000
SPP67Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;goodfellowii000000000000003712300000000000
SPP68Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp68_200000000000000000000000000165
SPP69Bacteria;Spirochaetes;Spirochaetes;Spirochaetales;Spirochaetaceae;Treponema;multispecies_spp69_40000000099000000000000000000
SPP7Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp7_50000064000000005401050000000000
SPP70Bacteria;Firmicutes;Clostridia;Clostridiales;Peptococcaceae;Peptococcus;multispecies_spp70_200000000000000000400000580000
SPP71Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;multispecies_spp71_20000000104481998016900001281190314000000746
SPP72Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;multispecies_spp72_20000000000000000002980001440000
SPP73Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;multispecies_spp73_200000000000000000000000015400
SPP74Bacteria;Firmicutes;multiclass;multiorder;Selenomonadaceae;Selenomonas;multispecies_spp74_200000000000000000000457000000
SPP75Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Micrococcaceae;Micrococcus;multispecies_spp75_200000000009680000000000000000
SPP76Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;multispecies_spp76_300000000000000000000000044700
SPP77Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonellaceae_[G-1];multispecies_spp77_200000222000187000000000002510000433
SPP78Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;multispecies_spp78_200000000000844000000000000000
SPP79Bacteria;Firmicutes;multiclass;multiorder;Veillonellaceae;Selenomonas;multispecies_spp79_400000000000000000166000000000
SPP8Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp8_20276779011046000000004890023431859346400140002551180269
SPP80Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;multifamily;multigenus;multispecies_spp80_200000041800000000000000000000
SPP81Bacteria;Proteobacteria;Alphaproteobacteria;Hyphomicrobiales;multifamily;multigenus;multispecies_spp81_3004390000000000004300000000000
SPP82Bacteria;Firmicutes;multiclass;multiorder;Selenomonadaceae;Selenomonas;multispecies_spp82_30000000003470460204000000006140000
SPP83Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Olsenella;multispecies_spp83_200000000044500000000000000000
SPP84Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Moraxellaceae;Acinetobacter;multispecies_spp84_200716000000000000000000000000
SPP85Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas;multispecies_spp85_500116509880232400520154000000000000000
SPP86Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;multispecies_spp86_200000000003960000000000000000
SPP87Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Moraxellaceae;multigenus;multispecies_spp87_200146000000000000000000000000
SPP88Bacteria;Proteobacteria;Gammaproteobacteria;Oceanospirillales;Halomonadaceae;Halomonas;multispecies_spp88_200000039600000000000000000000
SPP89Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas;multispecies_spp89_400000000001610000000000000000
SPP9Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp9_20000043500000001330000000000000
SPP90Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;multispecies_spp90_20000000000930000000000000000
SPP92Bacteria;Firmicutes;multiclass;Veillonellales;Veillonellaceae;Veillonella;multispecies_spp92_274300001420000011600117894434900122320700000531
SPP93Bacteria;Firmicutes;multiclass;Clostridiales;Veillonellaceae;Veillonella;multispecies_spp93_300000000000000378000000000000
SPP94Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas;multispecies_spp94_400050600000000000000000000000
SPP95Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingomonas;multispecies_spp95_200971000000000000000000000000
SPP96Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;multispecies_spp96_26400003420494448438018602200238350554324004207430737800
SPP97Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;multispecies_spp97_200000000000000001800000000000
SPP98Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Parvimonas;multispecies_spp98_30000097000000000000000000000
SPPN1Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;multispecies_sppn1_3_nov_97.835%0000000000000000130001450000000
SPPN2Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;multifamily;multigenus;multispecies_sppn2_2_nov_97.210%000000000015010000000000000000
SPPN3Bacteria;Bacteroidetes;Bacteroidetes_[C-1];Bacteroidetes_[O-1];Bacteroidetes_[F-1];Bacteroidetes_[G-3];multispecies_sppn3_2_nov_86.609%00000011400000000000000000000
SPPN4Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;multispecies_sppn4_2_nov_97.614%0000000000000000006000000000
SPPN7Bacteria;Actinobacteria;Actinomycetia;Nakamurellales;Nakamurellaceae;Nakamurella;multispecies_sppn7_2_nov_95.260%00873000000000000000000000000
 
 
Download OTU Tables at Different Taxonomy Levels
PhylumCount*: Relative**: CLR***:
ClassCount*: Relative**: CLR***:
OrderCount*: Relative**: CLR***:
FamilyCount*: Relative**: CLR***:
GenusCount*: Relative**: CLR***:
SpeciesCount*: Relative**: CLR***:
* Read count
** Relative abundance (count/total sample count)
*** Centered log ratio transformed abundance
;
 
The species listed in the table has full taxonomy and a dynamically assigned species ID specific to this report. When some reads match with the reference sequences of more than one species equally (i.e., same percent identiy and alignmnet coverage), they can't be assigned to a particular species. Instead, they are assigned to multiple species with the species notaton "s__multispecies_spp2_2". In this notation, spp2 is the dynamic ID assigned to these reads that hit multiple sequences and the "_2" at the end of the notation means there are two species in the spp2.

You can look up which species are included in the multi-species assignment, in this table below:
 
 
 
 
Another type of notation is "s__multispecies_sppn2_2", in which the "n" in the sppn2 means it's a potential novel species because all the reads in this species have < 98% idenity to any of the reference sequences. They were grouped together based on de novo OTU clustering at 98% identity cutoff. And then a representative sequence was chosed to BLASTN search against the reference database to find the closest match (but will still be < 98%). This representative sequence also matched equally to more than one species, hence the "spp" was given in the label.
 
 

Taxonomy Bar Plots for All Samples

 
 

Taxonomy Bar Plots for Individual Comparison Groups

 
 
Comparison No.Comparison NameFamiliesGeneraSpecies
Comparison 1Control vs PeriodontitisPDFSVGPDFSVGPDFSVG
Comparison 2Control vs ParkinsonPDFSVGPDFSVGPDFSVG
Comparison 3Periodontitis vs ParkinsonPDFSVGPDFSVGPDFSVG
Comparison 4Control vs Periodontitis vs ParkinsonPDFSVGPDFSVGPDFSVG
 
 

VIII. Analysis - Alpha Diversity

 

In ecology, alpha diversity (α-diversity) is the mean species diversity in sites or habitats at a local scale. The term was introduced by R. H. Whittaker[1][2] together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites or habitats at a more local scale (alpha diversity) and the differentiation among those habitats (beta diversity).


References:
Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338. doi:10.2307/1943563
Whittaker, R. H. (1972). Evolution and Measurement of Species Diversity. Taxon, 21, 213-251. doi:10.2307/1218190

 

Alpha Diversity Analysis by Rarefaction

Diversity measures are affected by the sampling depth. Rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples. Rarefaction curves generally grow rapidly at first, as the most common species are found, but the curves plateau as only the rarest species remain to be sampled.


References:
Willis AD. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol. 2019 Oct 23;10:2407. doi: 10.3389/fmicb.2019.02407. PMID: 31708888; PMCID: PMC6819366.

 
 
 

Boxplot of Alpha-diversity Indices

The two main factors taken into account when measuring diversity are richness and evenness. Richness is a measure of the number of different kinds of organisms present in a particular area. Evenness compares the similarity of the population size of each of the species present. There are many different ways to measure the richness and evenness. These measurements are called "estimators" or "indices". Below is a diversity of 3 commonly used indices showing the values for all the samples (dots) and in groups (boxes).

 
Alpha Diversity Box Plots for All Groups
 
 
 
 
 
 
 
Alpha Diversity Box Plots for Individual Comparisons
 
Comparison 1Control vs PeriodontitisView in PDFView in SVG
Comparison 2Control vs ParkinsonView in PDFView in SVG
Comparison 3Periodontitis vs ParkinsonView in PDFView in SVG
Comparison 4Control vs Periodontitis vs ParkinsonView in PDFView in SVG
 
 
 

Group Significance of Alpha-diversity Indices

To test whether the alpha diversity among different comparison groups are different statisticall, we use the Kruskal Wallis H test provided the "alpha-group-significance" fucntion in the QIIME 2 "diversity" package. Kruskal Wallis H test is the non-parametric alternative to the One Way ANOVA. Non-parametric means that the test doesn’t assume your data comes from a particular distribution. The H test is used when the assumptions for ANOVA aren’t met (like the assumption of normality). It is sometimes called the one-way ANOVA on ranks, as the ranks of the data values are used in the test rather than the actual data points. The H test determines whether the medians of two or more groups are different.

Below are the Kruskal Wallis H test results for each comparison based on three different alpha diversity measures: 1) Observed species (features), 2) Shannon index, and 3) Simpson index.

 
 
Comparison 1.Control vs PeriodontitisObserved FeaturesShannon IndexSimpson Index
Comparison 2.Control vs ParkinsonObserved FeaturesShannon IndexSimpson Index
Comparison 3.Periodontitis vs ParkinsonObserved FeaturesShannon IndexSimpson Index
Comparison 4.Control vs Periodontitis vs ParkinsonObserved FeaturesShannon IndexSimpson Index
 
 

IX. Analysis - Beta Diversity

 

NMDS and PCoA Plots

Beta diversity compares the similarity (or dissimilarity) of microbial profiles between different groups of samples. There are many different similarity/dissimilarity metrics. In general, they can be quantitative (using sequence abundance, e.g., Bray-Curtis or weighted UniFrac) or binary (considering only presence-absence of sequences, e.g., binary Jaccard or unweighted UniFrac). They can be even based on phylogeny (e.g., UniFrac metrics) or not (non-UniFrac metrics, such as Bray-Curtis, etc.).

For microbiome studies, species profiles of samples can be compared with the Bray-Curtis dissimilarity, which is based on the count data type. The pair-wise Bray-Curtis dissimilarity matrix of all samples can then be subject to either multi-dimensional scaling (MDS, also known as PCoA) or non-metric MDS (NMDS).

MDS/PCoA is a scaling or ordination method that starts with a matrix of similarities or dissimilarities between a set of samples and aims to produce a low-dimensional graphical plot of the data in such a way that distances between points in the plot are close to original dissimilarities.

NMDS is similar to MDS, however it does not use the dissimilarities data, instead it converts them into the ranks and use these ranks in the calculation.

In our beta diversity analysis, Bray-Curtis dissimilarity matrix was first calculated and then plotted by the PCoA and NMDS separately. Below are beta diveristy results for all groups together:

 
 
NMDS and PCoA Plots for All Groups
 
 
 
 
 

The above PCoA and NMDS plots are based on count data. The count data can also be transformed into centered log ratio (CLR) for each species. The CLR data is no longer count data and cannot be used in Bray-Curtis dissimilarity calculation. Instead CLR can be compared with Euclidean distances. When CLR data are compared by Euclidean distance, the distance is also called Aitchison distance.

Below are the NMDS and PCoA plots of the Aitchison distances of the samples:

 
 
 
 
 
 
 
NMDS and PCoA Plots for Individual Comparisons
 
 
Comparison No.Comparison NameNMDAPCoA
Bray-CurtisCLR EuclideanBray-CurtisCLR Euclidean
Comparison 1Control vs PeriodontitisPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 2Control vs ParkinsonPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 3Periodontitis vs ParkinsonPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 4Control vs Periodontitis vs ParkinsonPDFSVGPDFSVGPDFSVGPDFSVG
 
 
 
 
 

Interactive 3D PCoA Plots - Bray-Curtis Dissimilarity

 
 
 

Interactive 3D PCoA Plots - Euclidean Distance

 
 
 

Interactive 3D PCoA Plots - Correlation Coefficients

 
 
 

Group Significance of Beta-diversity Indices

To test whether the between-group dissimilarities are significantly greater than the within-group dissimilarities, the "beta-group-significance" function provided in the QIIME 2 "diversity" package was used with PERMANOVA (permutational multivariate analysis of variance) as the group significant testing method.

Three beta diversity matrics were used: 1) Bray–Curtis dissimilarity 2) Correlation coefficient matrix , and 3) Aitchison distance (Euclidean distance between clr-transformed compositions).

 
 
Comparison 1.Control vs PeriodontitisBray–CurtisCorrelationAitchison
Comparison 2.Control vs ParkinsonBray–CurtisCorrelationAitchison
Comparison 3.Periodontitis vs ParkinsonBray–CurtisCorrelationAitchison
Comparison 4.Control vs Periodontitis vs ParkinsonBray–CurtisCorrelationAitchison
 
 
 

X. Analysis - Differential Abundance

16S rRNA next generation sequencing (NGS) generates a fixed number of reads that reflect the proportion of different species in a sample, i.e., the relative abundance of species, instead of the absolute abundance. In Mathematics, measurements involving probabilities, proportions, percentages, and ppm can all be thought of as compositional data. This makes the microbiome read count data “compositional” (Gloor et al, 2017). In general, compositional data represent parts of a whole which only carry relative information (http://www.compositionaldata.com/).

The problem of microbiome data being compositional arises when comparing two groups of samples for identifying “differentially abundant” species. A species with the same absolute abundance between two conditions, its relative abundances in the two conditions (e.g., percent abundance) can become different if the relative abundance of other species change greatly. This problem can lead to incorrect conclusion in terms of differential abundance for microbial species in the samples.

When studying differential abundance (DA), the current better approach is to transform the read count data into log ratio data. The ratios are calculated between read counts of all species in a sample to a “reference” count (e.g., mean read count of the sample). The log ratio data allow the detection of DA species without being affected by percentage bias mentioned above

In this report, a compositional DA analysis tool “ANCOM” (analysis of composition of microbiomes) was used. ANCOM transforms the count data into log-ratios and thus is more suitable for comparing the composition of microbiomes in two or more populations. "ANCOM" generates a table of features with W-statistics and whether the null hypothesis is rejected. The “W” is the W-statistic, or number of features that a single feature is tested to be significantly different against. Hence the higher the "W" the more statistical sifgnificane that a feature/species is differentially abundant.


References:

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017 Nov 15;8:2224. doi: 10.3389/fmicb.2017.02224. PMID: 29187837; PMCID: PMC5695134.

Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015 May 29;26:27663. doi: 10.3402/mehd.v26.27663. PMID: 26028277; PMCID: PMC4450248.

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 

ANCOM Differential Abundance Analysis

 
ANCOM Results for Individual Comparisons
Comparison No.Comparison Name
Comparison 1.Control vs Periodontitis
Comparison 2.Control vs Parkinson
Comparison 3.Periodontitis vs Parkinson
Comparison 4.Control vs Periodontitis vs Parkinson
 
 

ANCOM-BC Differential Abundance Analysis

 

Starting with version V1.2, we also include the results of ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) (Lin and Peddada 2020). ANCOM-BC is an updated version of "ANCOM" that: (a) provides statistically valid test with appropriate p-values, (b) provides confidence intervals for differential abundance of each taxon, (c) controls the False Discovery Rate (FDR), (d) maintains adequate power, and (e) is computationally simple to implement. The bias correction (BC) addresses a challenging problem of the bias introduced by differences in the sampling fractions across samples. This bias has been a major hurdle in performing DA analysis of microbiome data. ANCOM-BC estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework.

References:

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 
ANCOM-BC Results for Individual Comparisons
 
Comparison No.Comparison Name
Comparison 1.Control vs Periodontitis
Comparison 2.Control vs Parkinson
Comparison 3.Periodontitis vs Parkinson
Comparison 4.Control vs Periodontitis vs Parkinson
 
 
 

LEfSe - Linear Discriminant Analysis Effect Size

LEfSe (Linear Discriminant Analysis Effect Size) is an alternative method to find "organisms, genes, or pathways that consistently explain the differences between two or more microbial communities" (Segata et al., 2011). Specifically, LEfSe uses rank-based Kruskal-Wallis (KW) sum-rank test to detect features with significant differential (relative) abundance with respect to the class of interest. Since it is rank-based, instead of proportional based, the differential species identified among the comparison groups is less biased (than percent abundance based).

Reference:

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011 Jun 24;12(6):R60. doi: 10.1186/gb-2011-12-6-r60. PMID: 21702898; PMCID: PMC3218848.

 
Control vs Periodontitis
 
 
 
 
 
 
 
LEfSe Results for All Comparisons
 
Comparison No.Comparison Name
Comparison 1.Control vs Periodontitis
Comparison 2.Control vs Parkinson
Comparison 3.Periodontitis vs Parkinson
Comparison 4.Control vs Periodontitis vs Parkinson
 
 

XI. Analysis - Heatmap Profile

 

Species vs Sample Abundance Heatmap for All Samples

 
 
 

Heatmaps for Individual Comparisons

 
A) Two-way clustering - clustered on both columns (Samples) and rows (organism)
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Control vs PeriodontitisPDFSVGPDFSVGPDFSVG
Comparison 2Control vs ParkinsonPDFSVGPDFSVGPDFSVG
Comparison 3Periodontitis vs ParkinsonPDFSVGPDFSVGPDFSVG
Comparison 4Control vs Periodontitis vs ParkinsonPDFSVGPDFSVGPDFSVG
 
 
B) One-way clustering - clustered on rows (organism) only
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Control vs PeriodontitisPDFSVGPDFSVGPDFSVG
Comparison 2Control vs ParkinsonPDFSVGPDFSVGPDFSVG
Comparison 3Periodontitis vs ParkinsonPDFSVGPDFSVGPDFSVG
Comparison 4Control vs Periodontitis vs ParkinsonPDFSVGPDFSVGPDFSVG
 
 
C) No clustering
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Control vs PeriodontitisPDFSVGPDFSVGPDFSVG
Comparison 2Control vs ParkinsonPDFSVGPDFSVGPDFSVG
Comparison 3Periodontitis vs ParkinsonPDFSVGPDFSVGPDFSVG
Comparison 4Control vs Periodontitis vs ParkinsonPDFSVGPDFSVGPDFSVG
 
 

XII. Analysis - Network Association

To analyze the co-occurrence or co-exclusion between microbial species among different samples, network correlation analysis tools are usually used for this purpose. However, microbiome count data are compositional. If count data are normalized to the total number of counts in the sample, the data become not independent and traditional statistical metrics (e.g., correlation) for the detection of specie-species relationships can lead to spurious results. In addition, sequencing-based studies typically measure hundreds of OTUs (species) on few samples; thus, inference of OTU-OTU association networks is severely under-powered. Here we use SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues (Kurtz et al., 2015). SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. SPIEC-EASI provides two algorithms for network inferencing – 1) Meinshausen-Bühlmann's neighborhood selection (MB method) and inverse covariance selection (GLASSO method, i.e., graphical least absolute shrinkage and selection operator). This is fundamentally distinct from SparCC, which essentially estimate pairwise correlations. In addition to these two methods, we provide the results of a third method - SparCC (Sparse Correlations for Compositional Data)(Friedman & Alm 2012), which is also a method for inferring correlations from compositional data. SparCC estimates the linear Pearson correlations between the log-transformed components.


References:

Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015 May 7;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226. PMID: 25950956; PMCID: PMC4423992.

Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20. PMID: 23028285; PMCID: PMC3447976.

 

SPIEC-EASI Network Inference by Neighborhood Selection (MB Method)

 

 

 

Association Network Inference by SparCC

 

 

 
 

Copyright FOMC 2022