FOMC Service Report

16S rRNA Gene V1V3 Amplicon Sequencing

Version V1.41 fork

Version History

The Forsyth Institute, Cambridge, MA, USA
August 07, 2022

Project ID: 20220627_dfx_treatment


I. Project Summary

Project 20220627_dfx_treatment services do not include NGS sequencing of the V1V3 region of the 16S rRNA gene amplicons from the samples. First and foremost, please download this report. These links will expire after 60 days. We cannot guarantee the availability of your data after 60 days.

Full Bioinformatics analysis service was requested.

We provide many downstream analyses such as taxonomy assignment, alpha and beta diversity analyses, and differential abundance analysis.

For taxonomy assignment, most informative would be the taxonomy barplots. We provide an interactive barplots to show the relative abundance of microbes at different taxonomy levels (from Phylum to species) that you can choose.

If you specify which groups of samples you want to compare for differential abundance, we provide both ANCOM and LEfSe differential abundance analysis.

 

II. Workflow Checklist

1.Sample Received
2.Sample Quality Evaluated
3.Sample Prepared for Sequencing
4.Next-Gen Sequencing
5.Sequence Quality Check
6.Absolute Abundance
7.Report and Raw Sequence Data Available for Download
8.Bioinformatics Analysis - Reads Processing (DADA2 Quality Trimming, Denoising, Paired Reads Merging)
9.Bioinformatics Analysis - Reads Taxonomy Assignment
10.Bioinformatics Analysis - Alpha Diversity Analysis
11.Bioinformatics Analysis - Beta Diversity Analysis
12.Bioinformatics Analysis - Differential Abundance Analysis
13.Bioinformatics Analysis - Heatmap Profile
14.Bioinformatics Analysis - Network Association
 

III. NGS Sequencing

Not available
 

IV. Complete Report Download

The complete report of your project, including all links in this report, can be downloaded by clicking the link provided below. The downloaded file is a compressed ZIP file and once unzipped, open the file “REPORT.html” (may only shown as "REPORT" in your computer) by double clicking it. Your default web browser will open it and you will see the exact content of this report.

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Complete report download link:

To view the report, please follow the following steps:
1.Download the .zip file from the report link above.
2.Extract all the contents of the downloaded .zip file to your desktop.
3.Open the extracted folder and find the "REPORT.html" (may shown as only "REPORT").
4.Open (double-clicking) the REPORT.html file. Your default browser will open the top age of the complete report. Within the report, there are links to view all the analyses performed for the project.

 

V. Raw Sequence Data Download

Not available
 

VI. Analysis - DADA2 Read Processing

Not available
 

Sample Meta Information

#SampleIDSamplesInoculumTreatmentGroup
D1D1HealthyControlHealthy-Control
D2D2HealthyControlHealthy-Control
D3D3HealthyControlHealthy-Control
D4D4HealthyDfx_0.1mMHealthy-Dfx_0.1mM
D5D5HealthyDfx_0.1mMHealthy-Dfx_0.1mM
D6D6HealthyDfx_0.1mMHealthy-Dfx_0.1mM
D7D7HealthyDfx_0.2mMHealthy-Dfx_0.2mM
D8D8HealthyDfx_0.2mMHealthy-Dfx_0.2mM
D9D9HealthyDfx_0.2mMHealthy-Dfx_0.2mM
D10D10HealthyFe_0.1_mMHealthy-Fe_0.1_mM
D11D11HealthyFe_0.1_mMHealthy-Fe_0.1_mM
D12D12HealthyFe_0.1_mMHealthy-Fe_0.1_mM
D13D13PerioControlPerio-Control
D14D14PerioControlPerio-Control
D15D15PerioControlPerio-Control
D16D16PerioDfx_0.1mMPerio-Dfx_0.1mM
D17D17PerioDfx_0.1mMPerio-Dfx_0.1mM
D18D18PerioDfx_0.1mMPerio-Dfx_0.1mM
D19D19PerioDfx_0.2mMPerio-Dfx_0.2mM
D20D20PerioDfx_0.2mMPerio-Dfx_0.2mM
D21D21PerioDfx_0.2mMPerio-Dfx_0.2mM
D22D22PerioFe_0.1_mMPerio-Fe_0.1_mM
D23D23PerioFe_0.1_mMPerio-Fe_0.1_mM
D24D24PerioFe_0.1_mMPerio-Fe_0.1_mM
 
 

ASV Read Counts by Samples

#Sample IDRead Count
D184,761
D205,719
D175,822
D166,228
D146,283
D237,035
D97,290
D107,978
D68,628
D48,637
D18,799
D248,996
D119,234
D199,645
D229,646
D159,755
D89,913
D29,922
D39,961
D2110,697
D1311,478
D511,719
D711,952
D1213,411
 
 
 

VII. Analysis - Read Taxonomy Assignment

Read Taxonomy Assignment - Methods

 

The species-level, open-reference 16S rRNA NGS reads taxonomy assignment pipeline

Version 20210310
 

1. Raw sequences reads in FASTA format were BLASTN-searched against a combined set of 16S rRNA reference sequences. It consists of MOMD (version 0.1), the HOMD (version 15.2 http://www.homd.org/index.php?name=seqDownload&file&type=R ), HOMD 16S rRNA RefSeq Extended Version 1.1 (EXT), GreenGene Gold (GG) (http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/gold_strains_gg16S_aligned.fasta.gz) , and the NCBI 16S rRNA reference sequence set (https://ftp.ncbi.nlm.nih.gov/blast/db/16S_ribosomal_RNA.tar.gz). These sequences were screened and combined to remove short sequences (<1000nt), chimera, duplicated and sub-sequences, as well as sequences with poor taxonomy annotation (e.g., without species information). This process resulted in 1,015 from HOMD V15.22, 495 from EXT, 3,940 from GG and 18,044 from NCBI, a total of 25,120 sequences. Altogether these sequence represent a total of 15,601 oral and non-oral microbial species.

The NCBI BLASTN version 2.7.1+ (Zhang et al, 2000) was used with the default parameters. Reads with ≥ 98% sequence identity to the matched reference and ≥ 90% alignment length (i.e., ≥ 90% of the read length that was aligned to the reference and was used to calculate the sequence percent identity) were classified based on the taxonomy of the reference sequence with highest sequence identity. If a read matched with reference sequences representing more than one species with equal percent identity and alignment length, it was subject to chimera checking with USEARCH program version v8.1.1861 (Edgar 2010). Non-chimeric reads with multi-species best hits were considered valid and were assigned with a unique species notation (e.g., spp) denoting unresolvable multiple species.

2. Unassigned reads (i.e., reads with < 98% identity or < 90% alignment length) were pooled together and reads < 200 bases were removed. The remaining reads were subject to the de novo operational taxonomy unit (OTU) calling and chimera checking using the USEARCH program version v8.1.1861 (Edgar 2010). The de novo OTU calling and chimera checking was done using 98% as the sequence identity cutoff, i.e., the species-level OTU. The output of this step produced species-level de novo clustered OTUs with 98% identity. Representative reads from each of the OTUs/species were then BLASTN-searched against the same reference sequence set again to determine the closest species for these potential novel species. These potential novel species were pooled together with the reads that were signed to specie-level in the previous step, for down-stream analyses.

Reference:
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12. PubMed PMID: 20709691.

3. Designations used in the taxonomy:

	1) Taxonomy levels are indicated by these prefixes:
	
	   k__: domain/kingdom
	   p__: phylum
	   c__: class
	   o__: order
	   f__: family
	   g__: genus  
	   s__: species
	
	   Example: 
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__faecis
		
	2) Unique level identified – known species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__hominis
	
	   The above example shows some reads match to a single species (all levels are unique)
	
	3) Non-unique level identified – known species:

	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__multispecies_spp123_3
	   
	   The above example “s__multispecies_spp123_3” indicates certain reads equally match to 3 species of the 
	   genus Roseburia; the “spp123” is a temporally assigned species ID.
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__multigenus;s__multispecies_spp234_5
	   
	   The above example indicates certain reads match equally to 5 different species, which belong to multiple genera.; 
	   the “spp234” is a temporally assigned species ID.
	
	4) Unique level identified – unknown species, potential novel species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ hominis_nov_97%
	   
	   The above example indicates that some reads have no match to any of the reference sequences with 
	   sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. However this groups 
	   of reads (actually the representative read from a de novo  OTU) has 96% percent identity to 
	   Roseburia hominis, thus this is a potential novel species, closest to Roseburia hominis. 
	   (But they are not the same species).
	
	5) Multiple level identified – unknown species, potential novel species:
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ multispecies_sppn123_3_nov_96%
	
	   The above example indicates that some reads have no match to any of the reference sequences 
	   with sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. 
	   However this groups of reads (actually the representative read from a de novo  OTU) 
	   has 96% percent identity equally to 3 species in Roseburia. Thus this is no single 
	   closest species, instead this group of reads match equally to multiple species at 96%. 
	   Since they have passed chimera check so they represent a novel species. “sppn123” is a 
	   temporary ID for this potential novel species. 

 
4. The taxonomy assignment algorithm is illustrated in this flow char below:
 
 
 
 

Read Taxonomy Assignment - Result Summary *

CodeCategoryMPC=0% (>=1 read)MPC=0.01%(>=20 reads)
ATotal reads213,509213,509
BTotal assigned reads206,339206,339
CAssigned reads in species with read count < MPC01,058
DAssigned reads in samples with read count < 50000
ETotal samples2424
FSamples with reads >= 5002424
GSamples with reads < 50000
HTotal assigned reads used for analysis (B-C-D)206,339205,281
IReads assigned to single species202,307201,732
JReads assigned to multiple species697634
KReads assigned to novel species3,3352,915
LTotal number of species351150
MNumber of single species230115
NNumber of multi-species156
ONumber of novel species10629
PTotal unassigned reads7,1707,170
QChimeric reads8585
RReads without BLASTN hits00
SOthers: short, low quality, singletons, etc.7,0857,085
A=B+P=C+D+H+Q+R+S
E=F+G
B=C+D+H
H=I+J+K
L=M+N+O
P=Q+R+S
* MPC = Minimal percent (of all assigned reads) read count per species, species with read count < MPC were removed.
* Samples with reads < 500 were removed from downstream analyses.
* The assignment result from MPC=0.1% was used in the downstream analyses.
 
 
 

Read Taxonomy Assignment - ASV Species-Level Read Counts Table

This table shows the read counts for each sample (columns) and each species identified based on the ASV sequences. The downstream analyses were based on this table.
SPIDTaxonomyD1D10D11D12D13D14D15D16D17D18D19D2D20D21D22D23D24D3D4D5D6D7D8D9
SP1Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._oral_taxon_2791416316991200191311943189010612139911368216203713000
SP10Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;parainfluenzae34373957000000101682101573338704139255390394
SP101Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_05600230000000560000022441000
SP107Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Parvimonas;micra74243473924390011830013191843170000
SP110Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;asaccharolyticum00092001322030711240000000
SP111Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Megasphaera;micronuciformis0000000201000310200710000
SP112Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;anginosus0000837974240171617190000000
SP115Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Coriobacteriaceae;Atopobium;parvulum4714123120000601919122000033
SP117Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp._oral_taxon_3140100002345200310290000000
SP118Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp._oral_taxon_335000342200000001712110010000
SP119Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;maculosa010025161874900001020170000000
SP12Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._polymorphum5891225184415831440715585187416121287237174712333539129165399379284012388977057425
SP120Bacteria;Synergistetes;Synergistia;Synergistales;Synergistaceae;Fretibacterium;fastidiosum00100100102306261100100000
SP121Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;marshii0000191431900001246250000000
SP122Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;buccae3003132041041133345321010
SP123Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._Oral_Taxon_H2140234070234026561717285510
SP124Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_481343348561010001280111035272417494728
SP126Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;infantis00000010000120000030114171900
SP129Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;saccharolytica0003001000011002220000000
SP13Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;cristatus15516361462189344176013645441951251737789605315913841243694320329341468
SP132Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._Oral_Taxon_G550821710010021221011854203016
SP138Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;intermedius754400000002000104082100
SP142Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Mogibacterium;diversum0000013910000001390000000
SP15Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;rava00001471412146060630009045180000000
SP152Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;sp._Oral_Taxon_G43000000046620030000000000
SP155Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;pleuritidis0000003111100001120000000
SP16Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;parvula_group329377484577360177432374276168514420391546276400298355732970566677944528
SP163Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._Oral_Taxon_F8522450001000102110024042116
SP167Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Bergeyella;sp._oral_taxon_90029111391000003000321000000
SP17Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-7];[Eubacterium]_yurii_subsp._yurii_&_margaretiae000175428740621801005602902490000010
SP172Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;rectus000000092920000000000000
SP174Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Bergeyella;sp._oral_taxon_322112100000003001001174000
SP18Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._oral_taxon_278701013471049883966340110280161263639069053000
SP19Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp._oral_taxon_308307158211505147883201004970026874171363100000
SP2Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;concisus13226820812727513181312081361508934931591363219106995607504536636412975
SP20Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;tigurinus1286091788335275482104127281767145287455367265886505435041
SP21Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Eubacterium_[XI][G-7];yurii000056213100101003029210000000
SP22Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Anaeroglobus;geminatus07102681331721194290015726221628746723202
SP23Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._Oral_Taxon_H6471013130000120545011857214106
SP24Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._Oral_Taxon_E830000175525130433120014000
SP25Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;gordonii7617211006103022368182113513985101844858205
SP26Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;endodontalis00107322133010000229785650000000
SP27Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._vincentii3281702532915289354566219135426282042200000
SP28Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_146132124801280101001550000216842553493927
SP29Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;showae2030482411557831491063853391479591010301413
SP3Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;dentisani6151985257714278358725120634519868328125775913214757605510930170
SP30Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Solobacterium;moorei13159691895824120172224132483578812319615930101221
SP31Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_064201299172161458055011546916911419921019
SP32Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp._oral_taxon_317273101057185200002002629191200000
SP33Bacteria;Firmicutes;Bacilli;Lactobacillales;Aerococcaceae;Abiotrophia;defectiva18081616570000220014553530000
SP34Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;flueggei03291012241032128112052307
SP35Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;melaninogenica50250672110130100670000710730850015680722
SP36Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sanguinis140902032416638301313881592126570371892510831273922
SP37Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;curvus1441110132114532020352152219222435889
SP38Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;gingivalis1535336419870000390011171823001000
SP39Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Eikenella;corrodens5139618711141723264450407091335666643402314
SP4Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oulorum5186726442298682901001523000000
SP40Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._animalis20031691832104500401481156000100000
SP41Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis10116200001211402100212510366152
SP42Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._oral_taxon_2751722731716900002530113619101062000
SP43Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;dianae6158821273314165547281604895163705157762936618510248
SP44Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;baroniae000091187319000010860000000
SP45Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Catonella;morbi00002095961108086707027579715201201200000
SP46Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;sp._Oral_Taxon_H2700001040036001000725000000
SP47Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;sp._oral_taxon_078001001180103015260002000001
SP48Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;parasanguinis_II0000131741111011382171260002000
SP49Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;infelix0141755306112718913524625114949443510121910
SP5Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;pallens20559981098206611000002468000002261390313000
SP50Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;denticola421892387516596330010048823223512000
SP51Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oralis001026721932718841873551662941224100129118
SP52Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;tannerae112281901121121585202172050001259422856000001
SP53Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;mitis963501267519215113011301024204162508267262327
SP54Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp._oral_taxon_47300007246913470010001601123181000100
SP55Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_138000011020030244130000010
SP57Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_05881816273610381227120103518822812164
SP58Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._Oral_Taxon_G67402200001142161012002030
SP6Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;gingivalis0000109717431701119754002286556427730001011
SP60Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;sinus00391601324354818104603043227330000000
SP61Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;artemidis9235191911172725203357021388211
SP62Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;morbillorum19942574501025000065011381052321607001
SP63Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;constellatus111014754641417114131020000
SP64Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sputigena199713124474853271147112152
SP65Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;naviforme500000040200100090000000
SP66Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Coriobacteriaceae;Atopobium;rimae821466784231086425273614035119
SP67Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Dialister;pneumosintes0000715170000000220120000000
SP68Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidales_[F-2];Bacteroidales_[G-2];sp._oral_taxon_274110244551733600101901392535102010000
SP69Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_1340191110201200114012385130
SP7Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_4231367287700189447214556851261023252118251944204611071419116021174162
SP70Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_919000018132713258906101316130000000
SP71Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;intermedia010024516039547973420003330140000000
SP72Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_070003051223442655410114481315302014000
SP73Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_136537497031114102579431750110749834103629591
SP74Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sputigena5221421037000080079821000000
SP75Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Lautropia;mirabilis01400000200070000019198711517817
SP77Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;sp._HOT_20458910111841194121028280359453021551110
SP78Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;odontolyticus030760010000021400133000
SP79Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._Oral_Taxon_F2938362538000000022000105711261221310
SP8Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;adiacens319961212132174051576674340441174210441375379221848838
SP80Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Parvimonas;sp._oral_taxon_1103170003310500006001118321000011
SP81Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Stomatobaculum;longum000000052217000350000000000
SP82Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_137051120001006000005021100
SP83Bacteria;Synergistetes;Synergistia;Synergistales;Synergistaceae;Fretibacterium;sp._oral_taxon_36000002815151914810111329130000000
SP84Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;sp._oral_taxon_1802105101904121020651970328110
SP87Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroidaceae_[G-1];sp._oral_taxon_272000065615271500001414170000000
SP88Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._Oral_Taxon_B66504000001003102006444012
SP89Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Centipeda;sp._Oral_Taxon_D18040400000021000002100804
SP9Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp._oral_taxon_8644718380100000120002114000000
SP90Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfovibrionaceae;Bilophila;wadsworthia00000015342103211010000000
SP92Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Megasphaera;sp._oral_taxon_1230000001012603221120000000
SP94Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Dialister;invisus12113825291012900121945301001000
SP95Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_149100200271063501924211200120132
SP96Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._Oral_Taxon_F920000265000000075160000000
SP97Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._str._C300131020000003000001273100
SP98Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;periodonticum00000844000000001130301100
SP99Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_8920021117102131964049853027261001100
SPN10Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._oral_taxon_279_nov_97.500%000041230000000152140000000
SPN100Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;dianae_nov_97.500%02412136762100150020021001
SPN11Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._nucleatum_nov_91.638%00110010001406130021000000
SPN12Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;concisus_nov_96.099%00000001101203210000000000
SPN13Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;melaninogenica_nov_97.865%3513000000010000070315000
SPN14Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Megasphaera;sp._oral_taxon_841_nov_86.572%316400000001010002143231
SPN15Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;heparinolyticus_nov_95.745%0000712427207000059113670000000
SPN16Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;rectus_nov_97.518%0000000152871109501101200000000000
SPN17Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._nucleatum_nov_91.289%152012011212101024011301
SPN18Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;pallens_nov_97.865%2332000000030000050211000
SPN19Bacteria;Firmicutes;Bacilli;Lactobacillales;Aerococcaceae;Abiotrophia;defectiva_nov_97.500%5021500000002000001500000
SPN20Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;gordonii_nov_95.000%310300000001000000856002
SPN21Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._nucleatum_nov_93.031%020811000002011000250401
SPN22Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;adiacens_nov_97.857%100200001002000005526210
SPN23Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;cristatus_nov_93.571%211000000000110000310493
SPN24Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._nucleatum_nov_91.289%100221101241350010010000
SPN25Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;necrophorum_nov_75.089%000000000290160040000000
SPN26Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;infelix_nov_96.786%0000000000120260000000000
SPN27Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-7];[Eubacterium]_yurii_subsp._schtitka_nov_96.071%000021117000000010250000000
SPN28Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;dianae_nov_97.527%00003520401838121301820192890000001
SPN40Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._nucleatum_nov_93.031%6142011961091292288131071098169406
SPN52Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp._oral_taxon_473_nov_97.153%00003612200100006618440000000
SPN64Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_481_nov_96.786%000023101510191480551112120000000
SPN76Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_056_nov_97.857%73111000000020000054719781118
SPN8Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._Oral_Taxon_F85_nov_97.518%0218000000010000003632163
SPN88Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;artemidis_nov_97.857%310813184204319401028123101
SPN9Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;dentisani_nov_97.872%51013000000010000011141097
SPP11Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp11_200001736024521205111911180000000
SPP15Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;multispecies_spp15_2318109000000030000013009331
SPP4Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;multispecies_spp4_20000508812300110000000000
SPP5Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;multispecies_spp5_2000013985184903292014140010010
SPP8Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;multispecies_spp8_21600110000000140000013000000
SPP9Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;multispecies_spp9_233115000000030000010010000
SPPN1Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_sppn1_2_nov_97.509%0000103944130153340000000
SPPN2Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;multispecies_sppn2_3_nov_97.500%0000385502000000000000000
 
 
Download OTU Tables at Different Taxonomy Levels
PhylumCount*: Relative**: CLR***:
ClassCount*: Relative**: CLR***:
OrderCount*: Relative**: CLR***:
FamilyCount*: Relative**: CLR***:
GenusCount*: Relative**: CLR***:
SpeciesCount*: Relative**: CLR***:
* Read count
** Relative abundance (count/total sample count)
*** Centered log ratio transformed abundance
;
 
The species listed in the table has full taxonomy and a dynamically assigned species ID specific to this report. When some reads match with the reference sequences of more than one species equally (i.e., same percent identiy and alignmnet coverage), they can't be assigned to a particular species. Instead, they are assigned to multiple species with the species notaton "s__multispecies_spp2_2". In this notation, spp2 is the dynamic ID assigned to these reads that hit multiple sequences and the "_2" at the end of the notation means there are two species in the spp2.

You can look up which species are included in the multi-species assignment, in this table below:
 
 
 
 
Another type of notation is "s__multispecies_sppn2_2", in which the "n" in the sppn2 means it's a potential novel species because all the reads in this species have < 98% idenity to any of the reference sequences. They were grouped together based on de novo OTU clustering at 98% identity cutoff. And then a representative sequence was chosed to BLASTN search against the reference database to find the closest match (but will still be < 98%). This representative sequence also matched equally to more than one species, hence the "spp" was given in the label.
 
 

Taxonomy Bar Plots for All Samples

 
 

Taxonomy Bar Plots for Individual Comparison Groups

 
 
Comparison No.Comparison NameFamiliesGeneraSpecies
Comparison 1Healthy-Dfx_0.1mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 2Healthy-Dfx_0.2mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 3Healthy-Fe_0.1_mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 4Perio-Dfx_0.1mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
Comparison 5Perio-Dfx_0.2mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
Comparison 6Perio-Fe_0.1_mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
 
 

VIII. Analysis - Alpha Diversity

 

In ecology, alpha diversity (α-diversity) is the mean species diversity in sites or habitats at a local scale. The term was introduced by R. H. Whittaker[1][2] together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites or habitats at a more local scale (alpha diversity) and the differentiation among those habitats (beta diversity).


References:
Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338. doi:10.2307/1943563
Whittaker, R. H. (1972). Evolution and Measurement of Species Diversity. Taxon, 21, 213-251. doi:10.2307/1218190

 

Alpha Diversity Analysis by Rarefaction

Diversity measures are affected by the sampling depth. Rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples. Rarefaction curves generally grow rapidly at first, as the most common species are found, but the curves plateau as only the rarest species remain to be sampled.


References:
Willis AD. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol. 2019 Oct 23;10:2407. doi: 10.3389/fmicb.2019.02407. PMID: 31708888; PMCID: PMC6819366.

 
 
 

Boxplot of Alpha-diversity Indices

The two main factors taken into account when measuring diversity are richness and evenness. Richness is a measure of the number of different kinds of organisms present in a particular area. Evenness compares the similarity of the population size of each of the species present. There are many different ways to measure the richness and evenness. These measurements are called "estimators" or "indices". Below is a diversity of 3 commonly used indices showing the values for all the samples (dots) and in groups (boxes).

 
Alpha Diversity Box Plots for All Groups
 
 
 
 
 
 
 
Alpha Diversity Box Plots for Individual Comparisons
 
Comparison 1Healthy-Dfx_0.1mM vs Healthy-ControlView in PDFView in SVG
Comparison 2Healthy-Dfx_0.2mM vs Healthy-ControlView in PDFView in SVG
Comparison 3Healthy-Fe_0.1_mM vs Healthy-ControlView in PDFView in SVG
Comparison 4Perio-Dfx_0.1mM vs Perio-ControlView in PDFView in SVG
Comparison 5Perio-Dfx_0.2mM vs Perio-ControlView in PDFView in SVG
Comparison 6Perio-Fe_0.1_mM vs Perio-ControlView in PDFView in SVG
 
 
 

Group Significance of Alpha-diversity Indices

To test whether the alpha diversity among different comparison groups are different statisticall, we use the Kruskal Wallis H test provided the "alpha-group-significance" fucntion in the QIIME 2 diversity package. Kruskal Wallis H test is the non parametric alternative to the One Way ANOVA. Non parametric means that the test doesn’t assume your data comes from a particular distribution. The H test is used when the assumptions for ANOVA aren’t met (like the assumption of normality). It is sometimes called the one-way ANOVA on ranks, as the ranks of the data values are used in the test rather than the actual data points. The test determines whether the medians of two or more groups are different.

Below are the Kruskal Wallis H test results for each comparison based on three different alpha diversity measures: 1) Observed species (features), 2) Shannon index, and 3) Simpson index.

 
 
Comparison 1.Healthy-Dfx_0.1mM vs Healthy-ControlObserved FeaturesShannon IndexSimpson Index
Comparison 2.Healthy-Dfx_0.2mM vs Healthy-ControlObserved FeaturesShannon IndexSimpson Index
Comparison 3.Healthy-Fe_0.1_mM vs Healthy-ControlObserved FeaturesShannon IndexSimpson Index
Comparison 4.Perio-Dfx_0.1mM vs Perio-ControlObserved FeaturesShannon IndexSimpson Index
Comparison 5.Perio-Dfx_0.2mM vs Perio-ControlObserved FeaturesShannon IndexSimpson Index
Comparison 6.Perio-Fe_0.1_mM vs Perio-ControlObserved FeaturesShannon IndexSimpson Index
 
 

IX. Analysis - Beta Diversity

 

NMDS and PCoA Plots

Beta diversity compares the similarity (or dissimilarity) of microbial profiles between different groups of samples. There are many different similarity/dissimilarity metrics. In general, they can be quantitative (using sequence abundance, e.g., Bray-Curtis or weighted UniFrac) or binary (considering only presence-absence of sequences, e.g., binary Jaccard or unweighted UniFrac). They can be even based on phylogeny (e.g., UniFrac metrics) or not (non-UniFrac metrics, such as Bray-Curtis, etc.).

For microbiome studies, species profiles of samples can be compared with the Bray-Curtis dissimilarity, which is based on the count data type. The pair-wise Bray-Curtis dissimilarity matrix of all samples can then be subject to either multi-dimensional scaling (MDS, also known as PCoA) or non-metric MDS (NMDS).

MDS/PCoA is a scaling or ordination method that starts with a matrix of similarities or dissimilarities between a set of samples and aims to produce a low-dimensional graphical plot of the data in such a way that distances between points in the plot are close to original dissimilarities.

NMDS is similar to MDS, however it does not use the dissimilarities data, instead it converts them into the ranks and use these ranks in the calculation.

In our beta diversity analysis, Bray-Curtis dissimilarity matrix was first calculated and then plotted by the PCoA and NMDS separately. Below are beta diveristy results for all groups together:

 
 
NMDS and PCoA Plots for All Groups
 
 
 
 
 

The above PCoA and NMDS plots are based on count data. The count data can also be transformed into centered log ratio (CLR) for each species. The CLR data is no longer count data and cannot be used in Bray-Curtis dissimilarity calculation. Instead CLR can be compared with Euclidean distances. When CLR data are compared by Euclidean distance, the distance is also called Aitchison distance.

Below are the NMDS and PCoA plots of the Aitchison distances of the samples:

 
 
 
 
 
 
 
NMDS and PCoA Plots for Individual Comparisons
 
 
Comparison No.Comparison NameNMDAPCoA
Bray-CurtisCLR EuclideanBray-CurtisCLR Euclidean
Comparison 1Healthy-Dfx_0.1mM vs Healthy-ControlPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 2Healthy-Dfx_0.2mM vs Healthy-ControlPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 3Healthy-Fe_0.1_mM vs Healthy-ControlPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 4Perio-Dfx_0.1mM vs Perio-ControlPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 5Perio-Dfx_0.2mM vs Perio-ControlPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 6Perio-Fe_0.1_mM vs Perio-ControlPDFSVGPDFSVGPDFSVGPDFSVG
 
 
 
 
 

Interactive 3D PCoA Plots - Bray-Curtis Dissimilarity

 
 
 

Interactive 3D PCoA Plots - Euclidean Distance

 
 
 

Interactive 3D PCoA Plots - Correlation Coefficients

 
 
 

Group Significance of Beta-diversity Indices

To test whether the between-group dissimilarities are significantly greater than the within-group dissimilarities, the "beta-group-significance" function provided in the QIIME 2 "diversity" package was used with PERMANOVA (permutational multivariate analysis of variance) chosen s the group significan testing method.

Three beta diversity matrics were used: 1) Bray–Curtis dissimilarity 2) Correlation coefficient matrix , and 3) Aitchison distance (Euclidean distance between clr-transformed compositions).

 
 
Comparison 1.Healthy-Dfx_0.1mM vs Healthy-ControlBray–CurtisCorrelationAitchison
Comparison 2.Healthy-Dfx_0.2mM vs Healthy-ControlBray–CurtisCorrelationAitchison
Comparison 3.Healthy-Fe_0.1_mM vs Healthy-ControlBray–CurtisCorrelationAitchison
Comparison 4.Perio-Dfx_0.1mM vs Perio-ControlBray–CurtisCorrelationAitchison
Comparison 5.Perio-Dfx_0.2mM vs Perio-ControlBray–CurtisCorrelationAitchison
Comparison 6.Perio-Fe_0.1_mM vs Perio-ControlBray–CurtisCorrelationAitchison
 
 
 

X. Analysis - Differential Abundance

16S rRNA next generation sequencing (NGS) generates a fixed number of reads that reflect the proportion of different species in a sample, i.e., the relative abundance of species, instead of the absolute abundance. In Mathematics, measurements involving probabilities, proportions, percentages, and ppm can all be thought of as compositional data. This makes the microbiome read count data “compositional” (Gloor et al, 2017). In general, compositional data represent parts of a whole which only carry relative information (http://www.compositionaldata.com/).

The problem of microbiome data being compositional arises when comparing two groups of samples for identifying “differentially abundant” species. A species with the same absolute abundance between two conditions, its relative abundances in the two conditions (e.g., percent abundance) can become different if the relative abundance of other species change greatly. This problem can lead to incorrect conclusion in terms of differential abundance for microbial species in the samples.

When studying differential abundance (DA), the current better approach is to transform the read count data into log ratio data. The ratios are calculated between read counts of all species in a sample to a “reference” count (e.g., mean read count of the sample). The log ratio data allow the detection of DA species without being affected by percentage bias mentioned above

In this report, a compositional DA analysis tool “ANCOM” (analysis of composition of microbiomes) was used. ANCOM transforms the count data into log-ratios and thus is more suitable for comparing the composition of microbiomes in two or more populations. "ANCOM" generates a table of features with W-statistics and whether the null hypothesis is rejected. The “W” is the W-statistic, or number of features that a single feature is tested to be significantly different against. Hence the higher the "W" the more statistical sifgnificane that a feature/species is differentially abundant.


References:

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017 Nov 15;8:2224. doi: 10.3389/fmicb.2017.02224. PMID: 29187837; PMCID: PMC5695134.

Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015 May 29;26:27663. doi: 10.3402/mehd.v26.27663. PMID: 26028277; PMCID: PMC4450248.

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 

ANCOM Differential Abundance Analysis

 
ANCOM Results for Individual Comparisons
Comparison No.Comparison Name
Comparison 1.Healthy-Dfx_0.1mM vs Healthy-Control
Comparison 2.Healthy-Dfx_0.2mM vs Healthy-Control
Comparison 3.Healthy-Fe_0.1_mM vs Healthy-Control
Comparison 4.Perio-Dfx_0.1mM vs Perio-Control
Comparison 5.Perio-Dfx_0.2mM vs Perio-Control
Comparison 6.Perio-Fe_0.1_mM vs Perio-Control
 
 

ANCOM-BC Differential Abundance Analysis

 

Starting with version V1.2, we also include the results of ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) (Lin and Peddada 2020). ANCOM-BC is an updated version of "ANCOM" that: (a) provides statistically valid test with appropriate p-values, (b) provides confidence intervals for differential abundance of each taxon, (c) controls the False Discovery Rate (FDR), (d) maintains adequate power, and (e) is computationally simple to implement. The bias correction (BC) addresses a challenging problem of the bias introduced by differences in the sampling fractions across samples. This bias has been a major hurdle in performing DA analysis of microbiome data. ANCOM-BC estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework.

References:

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 
ANCOM-BC Results for Individual Comparisons
 
Comparison No.Comparison Name
Comparison 1.Healthy-Dfx_0.1mM vs Healthy-Control
Comparison 2.Healthy-Dfx_0.2mM vs Healthy-Control
Comparison 3.Healthy-Fe_0.1_mM vs Healthy-Control
Comparison 4.Perio-Dfx_0.1mM vs Perio-Control
Comparison 5.Perio-Dfx_0.2mM vs Perio-Control
Comparison 6.Perio-Fe_0.1_mM vs Perio-Control
 
 
 

LEfSe - Linear Discriminant Analysis Effect Size

LEfSe (Linear Discriminant Analysis Effect Size) is an alternative method to find "organisms, genes, or pathways that consistently explain the differences between two or more microbial communities" (Segata et al., 2011). Specifically, LEfSe uses rank-based Kruskal-Wallis (KW) sum-rank test to detect features with significant differential (relative) abundance with respect to the class of interest. Since it is rank-based, instead of proportional based, the differential species identified among the comparison groups is less biased (than percent abundance based).

Reference:

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011 Jun 24;12(6):R60. doi: 10.1186/gb-2011-12-6-r60. PMID: 21702898; PMCID: PMC3218848.

 
Healthy-Dfx_0.1mM vs Healthy-Control
 
 
 
 
 
 
 
LEfSe Results for All Comparisons
 
Comparison No.Comparison Name
Comparison 1.Healthy-Dfx_0.1mM vs Healthy-Control
Comparison 2.Healthy-Dfx_0.2mM vs Healthy-Control
Comparison 3.Healthy-Fe_0.1_mM vs Healthy-Control
Comparison 4.Perio-Dfx_0.1mM vs Perio-Control
Comparison 5.Perio-Dfx_0.2mM vs Perio-Control
Comparison 6.Perio-Fe_0.1_mM vs Perio-Control
 
 

XI. Analysis - Heatmap Profile

 

Species vs Sample Abundance Heatmap for All Samples

 
 
 

Heatmaps for Individual Comparisons

 
A) Two-way clustering - clustered on both columns (Samples) and rows (organism)
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Healthy-Dfx_0.1mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 2Healthy-Dfx_0.2mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 3Healthy-Fe_0.1_mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 4Perio-Dfx_0.1mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
Comparison 5Perio-Dfx_0.2mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
Comparison 6Perio-Fe_0.1_mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
 
 
B) One-way clustering - clustered on rows (organism) only
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Healthy-Dfx_0.1mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 2Healthy-Dfx_0.2mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 3Healthy-Fe_0.1_mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 4Perio-Dfx_0.1mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
Comparison 5Perio-Dfx_0.2mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
Comparison 6Perio-Fe_0.1_mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
 
 
C) No clustering
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Healthy-Dfx_0.1mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 2Healthy-Dfx_0.2mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 3Healthy-Fe_0.1_mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 4Perio-Dfx_0.1mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
Comparison 5Perio-Dfx_0.2mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
Comparison 6Perio-Fe_0.1_mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
 
 

XII. Analysis - Network Association

To analyze the co-occurrence or co-exclusion between microbial species among different samples, network correlation analysis tools are usually used for this purpose. However, microbiome count data are compositional. If count data are normalized to the total number of counts in the sample, the data become not independent and traditional statistical metrics (e.g., correlation) for the detection of specie-species relationships can lead to spurious results. In addition, sequencing-based studies typically measure hundreds of OTUs (species) on few samples; thus, inference of OTU-OTU association networks is severely under-powered. Here we use SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues (Kurtz et al., 2015). SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. SPIEC-EASI provides two algorithms for network inferencing – 1) Meinshausen-Bühlmann's neighborhood selection (MB method) and inverse covariance selection (GLASSO method, i.e., graphical least absolute shrinkage and selection operator). This is fundamentally distinct from SparCC, which essentially estimate pairwise correlations. In addition to these two methods, we provide the results of a third method - SparCC (Sparse Correlations for Compositional Data)(Friedman & Alm 2012), which is also a method for inferring correlations from compositional data. SparCC estimates the linear Pearson correlations between the log-transformed components.


References:

Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015 May 7;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226. PMID: 25950956; PMCID: PMC4423992.

Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20. PMID: 23028285; PMCID: PMC3447976.

 

SPIEC-EASI Network Inference by Neighborhood Selection (MB Method)

 

 

 

Association Network Inference by SparCC

 

 

 
 

Copyright FOMC 2022