FOMC Service Report

16S rRNA Gene V1V3 Amplicon Sequencing

Version V1.41 fork

Version History

The Forsyth Institute, Cambridge, MA, USA
August 07, 2022

Project ID: 20220807_dfx_wash


I. Project Summary

Project 20220807_dfx_wash services do not include NGS sequencing of the V1V3 region of the 16S rRNA gene amplicons from the samples. First and foremost, please download this report. These links will expire after 60 days. We cannot guarantee the availability of your data after 60 days.

Full Bioinformatics analysis service was requested.

We provide many downstream analyses such as taxonomy assignment, alpha and beta diversity analyses, and differential abundance analysis.

For taxonomy assignment, most informative would be the taxonomy barplots. We provide an interactive barplots to show the relative abundance of microbes at different taxonomy levels (from Phylum to species) that you can choose.

If you specify which groups of samples you want to compare for differential abundance, we provide both ANCOM and LEfSe differential abundance analysis.

 

II. Workflow Checklist

1.Sample Received
2.Sample Quality Evaluated
3.Sample Prepared for Sequencing
4.Next-Gen Sequencing
5.Sequence Quality Check
6.Absolute Abundance
7.Report and Raw Sequence Data Available for Download
8.Bioinformatics Analysis - Reads Processing (DADA2 Quality Trimming, Denoising, Paired Reads Merging)
9.Bioinformatics Analysis - Reads Taxonomy Assignment
10.Bioinformatics Analysis - Alpha Diversity Analysis
11.Bioinformatics Analysis - Beta Diversity Analysis
12.Bioinformatics Analysis - Differential Abundance Analysis
13.Bioinformatics Analysis - Heatmap Profile
14.Bioinformatics Analysis - Network Association
 

III. NGS Sequencing

Not available
 

IV. Complete Report Download

The complete report of your project, including all links in this report, can be downloaded by clicking the link provided below. The downloaded file is a compressed ZIP file and once unzipped, open the file “REPORT.html” (may only shown as "REPORT" in your computer) by double clicking it. Your default web browser will open it and you will see the exact content of this report.

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Complete report download link:

To view the report, please follow the following steps:
1.Download the .zip file from the report link above.
2.Extract all the contents of the downloaded .zip file to your desktop.
3.Open the extracted folder and find the "REPORT.html" (may shown as only "REPORT").
4.Open (double-clicking) the REPORT.html file. Your default browser will open the top age of the complete report. Within the report, there are links to view all the analyses performed for the project.

 

V. Raw Sequence Data Download

Not available
 

VI. Analysis - DADA2 Read Processing

Not available
 

Sample Meta Information

#SampleIDSamplesInoculumTreatmentGroup
W1W1HealthyControlHealthy-Control
W2W2HealthyControlHealthy-Control
W3W3HealthyControlHealthy-Control
W4W4HealthyDfx_1mMHealthy-Dfx_1mM
W5W5HealthyDfx_1mMHealthy-Dfx_1mM
W6W6HealthyDfx_1mMHealthy-Dfx_1mM
W7W7HealthyDfx_2mMHealthy-Dfx_2mM
W8W8HealthyDfx_2mMHealthy-Dfx_2mM
W9W9HealthyDfx_2mMHealthy-Dfx_2mM
W10W10PerioControlPerio-Control
W11W11PerioControlPerio-Control
W12W12PerioControlPerio-Control
W13W13PerioDfx_1mMPerio-Dfx_1mM
W14W14PerioDfx_1mMPerio-Dfx_1mM
W15W15PerioDfx_1mMPerio-Dfx_1mM
W16W16PerioDfx_2mMPerio-Dfx_2mM
W17W17PerioDfx_2mMPerio-Dfx_2mM
W18W18PerioDfx_2mMPerio-Dfx_2mM
 
 

ASV Read Counts by Samples

#Sample IDRead Count
W83,164
W24,808
W185,953
W16,059
W76,152
W106,185
W66,748
W148,070
W158,148
W128,512
W169,146
W410,146
W310,437
W1110,826
W1311,524
W1711,796
W511,912
W914,028
 
 
 

VII. Analysis - Read Taxonomy Assignment

Read Taxonomy Assignment - Methods

 

The species-level, open-reference 16S rRNA NGS reads taxonomy assignment pipeline

Version 20210310
 

1. Raw sequences reads in FASTA format were BLASTN-searched against a combined set of 16S rRNA reference sequences. It consists of MOMD (version 0.1), the HOMD (version 15.2 http://www.homd.org/index.php?name=seqDownload&file&type=R ), HOMD 16S rRNA RefSeq Extended Version 1.1 (EXT), GreenGene Gold (GG) (http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/gold_strains_gg16S_aligned.fasta.gz) , and the NCBI 16S rRNA reference sequence set (https://ftp.ncbi.nlm.nih.gov/blast/db/16S_ribosomal_RNA.tar.gz). These sequences were screened and combined to remove short sequences (<1000nt), chimera, duplicated and sub-sequences, as well as sequences with poor taxonomy annotation (e.g., without species information). This process resulted in 1,015 from HOMD V15.22, 495 from EXT, 3,940 from GG and 18,044 from NCBI, a total of 25,120 sequences. Altogether these sequence represent a total of 15,601 oral and non-oral microbial species.

The NCBI BLASTN version 2.7.1+ (Zhang et al, 2000) was used with the default parameters. Reads with ≥ 98% sequence identity to the matched reference and ≥ 90% alignment length (i.e., ≥ 90% of the read length that was aligned to the reference and was used to calculate the sequence percent identity) were classified based on the taxonomy of the reference sequence with highest sequence identity. If a read matched with reference sequences representing more than one species with equal percent identity and alignment length, it was subject to chimera checking with USEARCH program version v8.1.1861 (Edgar 2010). Non-chimeric reads with multi-species best hits were considered valid and were assigned with a unique species notation (e.g., spp) denoting unresolvable multiple species.

2. Unassigned reads (i.e., reads with < 98% identity or < 90% alignment length) were pooled together and reads < 200 bases were removed. The remaining reads were subject to the de novo operational taxonomy unit (OTU) calling and chimera checking using the USEARCH program version v8.1.1861 (Edgar 2010). The de novo OTU calling and chimera checking was done using 98% as the sequence identity cutoff, i.e., the species-level OTU. The output of this step produced species-level de novo clustered OTUs with 98% identity. Representative reads from each of the OTUs/species were then BLASTN-searched against the same reference sequence set again to determine the closest species for these potential novel species. These potential novel species were pooled together with the reads that were signed to specie-level in the previous step, for down-stream analyses.

Reference:
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12. PubMed PMID: 20709691.

3. Designations used in the taxonomy:

	1) Taxonomy levels are indicated by these prefixes:
	
	   k__: domain/kingdom
	   p__: phylum
	   c__: class
	   o__: order
	   f__: family
	   g__: genus  
	   s__: species
	
	   Example: 
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__faecis
		
	2) Unique level identified – known species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__hominis
	
	   The above example shows some reads match to a single species (all levels are unique)
	
	3) Non-unique level identified – known species:

	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__multispecies_spp123_3
	   
	   The above example “s__multispecies_spp123_3” indicates certain reads equally match to 3 species of the 
	   genus Roseburia; the “spp123” is a temporally assigned species ID.
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__multigenus;s__multispecies_spp234_5
	   
	   The above example indicates certain reads match equally to 5 different species, which belong to multiple genera.; 
	   the “spp234” is a temporally assigned species ID.
	
	4) Unique level identified – unknown species, potential novel species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ hominis_nov_97%
	   
	   The above example indicates that some reads have no match to any of the reference sequences with 
	   sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. However this groups 
	   of reads (actually the representative read from a de novo  OTU) has 96% percent identity to 
	   Roseburia hominis, thus this is a potential novel species, closest to Roseburia hominis. 
	   (But they are not the same species).
	
	5) Multiple level identified – unknown species, potential novel species:
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ multispecies_sppn123_3_nov_96%
	
	   The above example indicates that some reads have no match to any of the reference sequences 
	   with sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. 
	   However this groups of reads (actually the representative read from a de novo  OTU) 
	   has 96% percent identity equally to 3 species in Roseburia. Thus this is no single 
	   closest species, instead this group of reads match equally to multiple species at 96%. 
	   Since they have passed chimera check so they represent a novel species. “sppn123” is a 
	   temporary ID for this potential novel species. 

 
4. The taxonomy assignment algorithm is illustrated in this flow char below:
 
 
 
 

Read Taxonomy Assignment - Result Summary *

CodeCategoryMPC=0% (>=1 read)MPC=0.01%(>=14 reads)
ATotal reads153,614153,614
BTotal assigned reads148,671148,671
CAssigned reads in species with read count < MPC0694
DAssigned reads in samples with read count < 50000
ETotal samples1818
FSamples with reads >= 5001818
GSamples with reads < 50000
HTotal assigned reads used for analysis (B-C-D)148,671147,977
IReads assigned to single species146,212145,886
JReads assigned to multiple species387360
KReads assigned to novel species2,0721,731
LTotal number of species307141
MNumber of single species197108
NNumber of multi-species115
ONumber of novel species9928
PTotal unassigned reads4,9434,943
QChimeric reads1818
RReads without BLASTN hits00
SOthers: short, low quality, singletons, etc.4,9254,925
A=B+P=C+D+H+Q+R+S
E=F+G
B=C+D+H
H=I+J+K
L=M+N+O
P=Q+R+S
* MPC = Minimal percent (of all assigned reads) read count per species, species with read count < MPC were removed.
* Samples with reads < 500 were removed from downstream analyses.
* The assignment result from MPC=0.1% was used in the downstream analyses.
 
 
 

Read Taxonomy Assignment - ASV Species-Level Read Counts Table

This table shows the read counts for each sample (columns) and each species identified based on the ASV sequences. The downstream analyses were based on this table.
SPIDTaxonomyW1W10W11W12W13W14W15W16W17W18W2W3W4W5W6W7W8W9
SP1Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._polymorphum15571749273514372313198024142094219214441291311526992998354100110533583
SP10Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;parvula_group36012714913882141966013192243661498765444259711008
SP100Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_89231222918101315281615321021
SP101Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;salivae200000000048320120
SP102Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_0702194915881311600001000
SP103Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;curvus000000000001658221561066
SP104Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;constellatus111423062000041004
SP106Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis100000000020126016
SP108Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._Oral_Taxon_E83021220212700000000
SP109Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._Oral_Taxon_H64200000110128330108
SP11Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Anaeroglobus;geminatus0052013181417894043155471251
SP113Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp._oral_taxon_335064060144100000000
SP116Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_4790000000000000860010
SP117Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Megasphaera;micronuciformis0010441111200008000
SP12Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Catonella;morbi002041838971661923313101000000
SP120Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroidaceae_[G-1];sp._oral_taxon_272012152465700000000
SP122Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_149100300110004700051
SP129Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;flueggei417503304113403002
SP13Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;tannerae029721251481591569178500111576323181718
SP137Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;infantis0000000000003020111
SP139Bacteria;Firmicutes;Mollicutes;Mycoplasmatales;Mycoplasmataceae;Mycoplasma;salivarium030033415100002001
SP14Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;pallens7840000000209982168127721172045706842790
SP142Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Centipeda;sp._Oral_Taxon_D18301000000004123015
SP15Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp._oral_taxon_8641600000100069850617519
SP152Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp._oral_taxon_376012041603000000000
SP153Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;artemidis211161301403011001
SP163Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._Oral_Taxon_G55110100111014202102
SP17Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-7];[Eubacterium]_yurii_subsp._yurii_&_margaretiae122523422955624423120223010500000000
SP173Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp._oral_taxon_301014321000300000000
SP18Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oralis1111231331650825178140453
SP19Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oulorum2192119426293251024045249
SP2Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp._oral_taxon_3081887250759334033326145281196566291177119452
SP20Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;gingivalis0117806825662613412095233930400000002
SP21Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;intermedia01431863511163548461868700100011
SP22Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._animalis658414265608811594984925316826130122
SP23Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;infelix4016212255466252334512221
SP24Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;tigurinus140332223183014142822691313861122361971777
SP26Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;dianae272654294736293447315273720227353
SP27Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._oral_taxon_27802897478088058434254668184622690902010
SP28Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;denticola033032022131233102753169952351842
SP29Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;parainfluenzae37300000100153236451423378
SP3Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;morbillorum391113191819163063132897921477656
SP30Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._vincentii148561047169697687251912224227429
SP31Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidales_[F-2];Bacteroidales_[G-2];sp._oral_taxon_27421027304044132111796562233845857715364545
SP32Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;gordonii4644620721346153763561231175
SP33Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;adiacens14011323611051521623913751441662571127019236
SP34Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;cristatus37624381084072636310451225597630504337118180776
SP35Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;concisus27894108101811616331109225188345
SP36Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;melaninogenica12012710210101146343239359480277614
SP37Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sanguinis34142226382016163313357180362212362
SP38Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;showae1312231191781116375237281722203
SP39Bacteria;Firmicutes;Bacilli;Lactobacillales;Aerococcaceae;Abiotrophia;defectiva12262114410732552053324
SP4Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;baroniae0146454221561100000000
SP40Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._Oral_Taxon_F293500000001019291936228424
SP41Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;rava026291834866830543872752657710000000
SP42Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Coriobacteriaceae;Atopobium;rimae9373129241526232398241136104937
SP43Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonellaceae_[G-1];sp._oral_taxon_129001131153000000000
SP44Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Eubacterium_[XI][G-7];yurii018122545202221211100000000
SP45Bacteria;Synergistetes;Synergistia;Synergistales;Synergistaceae;Fretibacterium;sp._oral_taxon_360026522969535039533900010000
SP46Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Stomatobaculum;longum001043032032000000
SP47Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp._oral_taxon_473003357490083135132000000000
SP48Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;saburreum013000178000000000
SP5Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._oral_taxon_27910102913449239991120714705132676852514708599841324
SP50Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;gingivalis477686321014413393125811130
SP51Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;periodonticum000103100109000000
SP52Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Parvimonas;micra44524101311991253642526751402477
SP53Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._Oral_Taxon_F920011211012715300000000
SP54Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;marshii057482034464013522600000000
SP55Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;odontolyticus001230012013070027
SP56Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sputigena239102022205112002
SP57Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Dialister;pneumosintes0910310140000000000
SP58Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Actinomyces;sp._oral_taxon_180423615101991131300018
SP59Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._oral_taxon_2750426622514123310002801602240411
SP6Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;dentisani4950338781610236424617067193112642345319133129
SP60Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_064809572920526740292111315
SP61Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;naviforme0234604710079100000
SP62Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;sinus01928742718152018400180000
SP63Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp._oral_taxon_317152291711116599227185018
SP64Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_136180001100011550152084443
SP65Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Parvimonas;sp._oral_taxon_110051310262191201401200000
SP66Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_058293196101481110545633039317
SP67Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Eikenella;corrodens2491414151319192313112425231922340
SP68Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._Oral_Taxon_H212601330051701220201
SP7Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_423771281320208101719167317711194146910625703121579
SP70Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp._oral_taxon_4720411102000000000000
SP71Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Coriobacteriaceae;Atopobium;parvulum037712269415501016
SP72Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;sp._Oral_Taxon_H270300010212321250110
SP73Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sputigena35353121241111420051017
SP74Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Dialister;invisus0827151785583641336807222010
SP76Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;pasteri01231310310248214000
SP77Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp._oral_taxon_314025102024362501300000000
SP78Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Coriobacteriaceae;Slackia;exigua000011024100020302
SP79Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;maculosa326192923112719201000000000
SP8Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;endodontalis0242587117690221626421635401000000
SP80Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._Oral_Taxon_G67401000010237302002
SP82Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._Oral_Taxon_B66600000000012101304
SP83Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_1467800100000043916082302517108
SP84Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;mitis7422231500023730208611531162566
SP86Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_481250111000002211018169132
SP88Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;catoniae0000000000100000118
SP9Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Solobacterium;moorei911015016011868113130897536332012066
SP90Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;sp._oral_taxon_078030010015200110000
SP92Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_9190912101256102900000000
SP94Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_0562200100000001981518172112
SP95Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;sp._HOT_20420114071810131134221002413
SP97Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;anginosus136151813300000000
SP98Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp._oral_taxon_21518410113300053000000
SP99Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;buccae1355749344363823110
SPN1Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._polymorphum_nov_97.500%112103322002311204
SPN10Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;heparinolyticus_nov_95.745%077334359515368705700000000
SPN11Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;dentisani_nov_97.500%012231311000000000
SPN13Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._nucleatum_nov_89.895%0810681111825500820300
SPN2Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_423_nov_97.857%600000000001360125
SPN20Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._nucleatum_nov_93.728%106135113324732126
SPN25Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;dianae_nov_97.527%0911145116918800000000
SPN3Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._nucleatum_nov_93.031%21382999412516172227610
SPN31Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;pallens_nov_97.865%30000000000429170310
SPN36Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;melaninogenica_nov_97.865%3000000000610616280418
SPN4Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;endodontalis_nov_97.865%0300010015500000000
SPN41Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp._oral_taxon_279_nov_97.865%00110803711000000000
SPN48Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp._oral_taxon_473_nov_97.153%020811011109600000000
SPN5Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._oral_taxon_058_nov_97.857%101000000044026105
SPN51Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;artemidis_nov_97.857%042282853211000001
SPN59Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._nucleatum_nov_91.986%4450323322112692014
SPN6Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;sp._HOT_204_nov_78.339%013264111200000000
SPN62Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;gingivalis_nov_97.500%00100505611200000000
SPN7Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;rava_nov_97.865%000032353100000000
SPN71Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;sp._oral_taxon_481_nov_96.786%088889467300000000
SPN73Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._nucleatum_nov_91.638%510030101029371501
SPN8Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._polymorphum_nov_96.774%000101011012061102
SPN83Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._polymorphum_nov_97.491%24021410312341080022
SPN84Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-7];[Eubacterium]_yurii_subsp._schtitka_nov_96.071%0174601131200000000
SPN9Bacteria;Firmicutes;Bacilli;Lactobacillales;Aerococcaceae;Abiotrophia;defectiva_nov_97.491%000000000004050007
SPN95Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._nucleatum_nov_88.502%064013311501201100
SPP10Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;multispecies_spp10_20000000000003126033
SPP11Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;multispecies_spp11_219000000000193261013101
SPP6Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;multispecies_spp6_2052141324100000000
SPP7Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;multispecies_spp7_2012010011011111102
SPP8Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp8_208251639192628181400200000
SPPN1Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_sppn1_2_nov_97.509%061221004500000000
SPPN2Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_sppn2_2_nov_89.161%003020406000000000
 
 
Download OTU Tables at Different Taxonomy Levels
PhylumCount*: Relative**: CLR***:
ClassCount*: Relative**: CLR***:
OrderCount*: Relative**: CLR***:
FamilyCount*: Relative**: CLR***:
GenusCount*: Relative**: CLR***:
SpeciesCount*: Relative**: CLR***:
* Read count
** Relative abundance (count/total sample count)
*** Centered log ratio transformed abundance
;
 
The species listed in the table has full taxonomy and a dynamically assigned species ID specific to this report. When some reads match with the reference sequences of more than one species equally (i.e., same percent identiy and alignmnet coverage), they can't be assigned to a particular species. Instead, they are assigned to multiple species with the species notaton "s__multispecies_spp2_2". In this notation, spp2 is the dynamic ID assigned to these reads that hit multiple sequences and the "_2" at the end of the notation means there are two species in the spp2.

You can look up which species are included in the multi-species assignment, in this table below:
 
 
 
 
Another type of notation is "s__multispecies_sppn2_2", in which the "n" in the sppn2 means it's a potential novel species because all the reads in this species have < 98% idenity to any of the reference sequences. They were grouped together based on de novo OTU clustering at 98% identity cutoff. And then a representative sequence was chosed to BLASTN search against the reference database to find the closest match (but will still be < 98%). This representative sequence also matched equally to more than one species, hence the "spp" was given in the label.
 
 

Taxonomy Bar Plots for All Samples

 
 

Taxonomy Bar Plots for Individual Comparison Groups

 
 
Comparison No.Comparison NameFamiliesGeneraSpecies
Comparison 1Healthy-Dfx_1mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 2Healthy-Dfx_2mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 3Perio-Dfx_1mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
Comparison 4Perio-Dfx_2mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
 
 

VIII. Analysis - Alpha Diversity

 

In ecology, alpha diversity (α-diversity) is the mean species diversity in sites or habitats at a local scale. The term was introduced by R. H. Whittaker[1][2] together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites or habitats at a more local scale (alpha diversity) and the differentiation among those habitats (beta diversity).


References:
Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338. doi:10.2307/1943563
Whittaker, R. H. (1972). Evolution and Measurement of Species Diversity. Taxon, 21, 213-251. doi:10.2307/1218190

 

Alpha Diversity Analysis by Rarefaction

Diversity measures are affected by the sampling depth. Rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples. Rarefaction curves generally grow rapidly at first, as the most common species are found, but the curves plateau as only the rarest species remain to be sampled.


References:
Willis AD. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol. 2019 Oct 23;10:2407. doi: 10.3389/fmicb.2019.02407. PMID: 31708888; PMCID: PMC6819366.

 
 
 

Boxplot of Alpha-diversity Indices

The two main factors taken into account when measuring diversity are richness and evenness. Richness is a measure of the number of different kinds of organisms present in a particular area. Evenness compares the similarity of the population size of each of the species present. There are many different ways to measure the richness and evenness. These measurements are called "estimators" or "indices". Below is a diversity of 3 commonly used indices showing the values for all the samples (dots) and in groups (boxes).

 
Alpha Diversity Box Plots for All Groups
 
 
 
 
 
 
 
Alpha Diversity Box Plots for Individual Comparisons
 
Comparison 1Healthy-Dfx_1mM vs Healthy-ControlView in PDFView in SVG
Comparison 2Healthy-Dfx_2mM vs Healthy-ControlView in PDFView in SVG
Comparison 3Perio-Dfx_1mM vs Perio-ControlView in PDFView in SVG
Comparison 4Perio-Dfx_2mM vs Perio-ControlView in PDFView in SVG
 
 
 

Group Significance of Alpha-diversity Indices

To test whether the alpha diversity among different comparison groups are different statisticall, we use the Kruskal Wallis H test provided the "alpha-group-significance" fucntion in the QIIME 2 diversity package. Kruskal Wallis H test is the non parametric alternative to the One Way ANOVA. Non parametric means that the test doesn’t assume your data comes from a particular distribution. The H test is used when the assumptions for ANOVA aren’t met (like the assumption of normality). It is sometimes called the one-way ANOVA on ranks, as the ranks of the data values are used in the test rather than the actual data points. The test determines whether the medians of two or more groups are different.

Below are the Kruskal Wallis H test results for each comparison based on three different alpha diversity measures: 1) Observed species (features), 2) Shannon index, and 3) Simpson index.

 
 
Comparison 1.Healthy-Dfx_1mM vs Healthy-ControlObserved FeaturesShannon IndexSimpson Index
Comparison 2.Healthy-Dfx_2mM vs Healthy-ControlObserved FeaturesShannon IndexSimpson Index
Comparison 3.Perio-Dfx_1mM vs Perio-ControlObserved FeaturesShannon IndexSimpson Index
Comparison 4.Perio-Dfx_2mM vs Perio-ControlObserved FeaturesShannon IndexSimpson Index
 
 

IX. Analysis - Beta Diversity

 

NMDS and PCoA Plots

Beta diversity compares the similarity (or dissimilarity) of microbial profiles between different groups of samples. There are many different similarity/dissimilarity metrics. In general, they can be quantitative (using sequence abundance, e.g., Bray-Curtis or weighted UniFrac) or binary (considering only presence-absence of sequences, e.g., binary Jaccard or unweighted UniFrac). They can be even based on phylogeny (e.g., UniFrac metrics) or not (non-UniFrac metrics, such as Bray-Curtis, etc.).

For microbiome studies, species profiles of samples can be compared with the Bray-Curtis dissimilarity, which is based on the count data type. The pair-wise Bray-Curtis dissimilarity matrix of all samples can then be subject to either multi-dimensional scaling (MDS, also known as PCoA) or non-metric MDS (NMDS).

MDS/PCoA is a scaling or ordination method that starts with a matrix of similarities or dissimilarities between a set of samples and aims to produce a low-dimensional graphical plot of the data in such a way that distances between points in the plot are close to original dissimilarities.

NMDS is similar to MDS, however it does not use the dissimilarities data, instead it converts them into the ranks and use these ranks in the calculation.

In our beta diversity analysis, Bray-Curtis dissimilarity matrix was first calculated and then plotted by the PCoA and NMDS separately. Below are beta diveristy results for all groups together:

 
 
NMDS and PCoA Plots for All Groups
 
 
 
 
 

The above PCoA and NMDS plots are based on count data. The count data can also be transformed into centered log ratio (CLR) for each species. The CLR data is no longer count data and cannot be used in Bray-Curtis dissimilarity calculation. Instead CLR can be compared with Euclidean distances. When CLR data are compared by Euclidean distance, the distance is also called Aitchison distance.

Below are the NMDS and PCoA plots of the Aitchison distances of the samples:

 
 
 
 
 
 
 
NMDS and PCoA Plots for Individual Comparisons
 
 
Comparison No.Comparison NameNMDAPCoA
Bray-CurtisCLR EuclideanBray-CurtisCLR Euclidean
Comparison 1Healthy-Dfx_1mM vs Healthy-ControlPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 2Healthy-Dfx_2mM vs Healthy-ControlPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 3Perio-Dfx_1mM vs Perio-ControlPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 4Perio-Dfx_2mM vs Perio-ControlPDFSVGPDFSVGPDFSVGPDFSVG
 
 
 
 
 

Interactive 3D PCoA Plots - Bray-Curtis Dissimilarity

 
 
 

Interactive 3D PCoA Plots - Euclidean Distance

 
 
 

Interactive 3D PCoA Plots - Correlation Coefficients

 
 
 

Group Significance of Beta-diversity Indices

To test whether the between-group dissimilarities are significantly greater than the within-group dissimilarities, the "beta-group-significance" function provided in the QIIME 2 "diversity" package was used with PERMANOVA (permutational multivariate analysis of variance) chosen s the group significan testing method.

Three beta diversity matrics were used: 1) Bray–Curtis dissimilarity 2) Correlation coefficient matrix , and 3) Aitchison distance (Euclidean distance between clr-transformed compositions).

 
 
Comparison 1.Healthy-Dfx_1mM vs Healthy-ControlBray–CurtisCorrelationAitchison
Comparison 2.Healthy-Dfx_2mM vs Healthy-ControlBray–CurtisCorrelationAitchison
Comparison 3.Perio-Dfx_1mM vs Perio-ControlBray–CurtisCorrelationAitchison
Comparison 4.Perio-Dfx_2mM vs Perio-ControlBray–CurtisCorrelationAitchison
 
 
 

X. Analysis - Differential Abundance

16S rRNA next generation sequencing (NGS) generates a fixed number of reads that reflect the proportion of different species in a sample, i.e., the relative abundance of species, instead of the absolute abundance. In Mathematics, measurements involving probabilities, proportions, percentages, and ppm can all be thought of as compositional data. This makes the microbiome read count data “compositional” (Gloor et al, 2017). In general, compositional data represent parts of a whole which only carry relative information (http://www.compositionaldata.com/).

The problem of microbiome data being compositional arises when comparing two groups of samples for identifying “differentially abundant” species. A species with the same absolute abundance between two conditions, its relative abundances in the two conditions (e.g., percent abundance) can become different if the relative abundance of other species change greatly. This problem can lead to incorrect conclusion in terms of differential abundance for microbial species in the samples.

When studying differential abundance (DA), the current better approach is to transform the read count data into log ratio data. The ratios are calculated between read counts of all species in a sample to a “reference” count (e.g., mean read count of the sample). The log ratio data allow the detection of DA species without being affected by percentage bias mentioned above

In this report, a compositional DA analysis tool “ANCOM” (analysis of composition of microbiomes) was used. ANCOM transforms the count data into log-ratios and thus is more suitable for comparing the composition of microbiomes in two or more populations. "ANCOM" generates a table of features with W-statistics and whether the null hypothesis is rejected. The “W” is the W-statistic, or number of features that a single feature is tested to be significantly different against. Hence the higher the "W" the more statistical sifgnificane that a feature/species is differentially abundant.


References:

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017 Nov 15;8:2224. doi: 10.3389/fmicb.2017.02224. PMID: 29187837; PMCID: PMC5695134.

Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015 May 29;26:27663. doi: 10.3402/mehd.v26.27663. PMID: 26028277; PMCID: PMC4450248.

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 

ANCOM Differential Abundance Analysis

 
ANCOM Results for Individual Comparisons
Comparison No.Comparison Name
Comparison 1.Healthy-Dfx_1mM vs Healthy-Control
Comparison 2.Healthy-Dfx_2mM vs Healthy-Control
Comparison 3.Perio-Dfx_1mM vs Perio-Control
Comparison 4.Perio-Dfx_2mM vs Perio-Control
 
 

ANCOM-BC Differential Abundance Analysis

 

Starting with version V1.2, we also include the results of ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) (Lin and Peddada 2020). ANCOM-BC is an updated version of "ANCOM" that: (a) provides statistically valid test with appropriate p-values, (b) provides confidence intervals for differential abundance of each taxon, (c) controls the False Discovery Rate (FDR), (d) maintains adequate power, and (e) is computationally simple to implement. The bias correction (BC) addresses a challenging problem of the bias introduced by differences in the sampling fractions across samples. This bias has been a major hurdle in performing DA analysis of microbiome data. ANCOM-BC estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework.

References:

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 
ANCOM-BC Results for Individual Comparisons
 
Comparison No.Comparison Name
Comparison 1.Healthy-Dfx_1mM vs Healthy-Control
Comparison 2.Healthy-Dfx_2mM vs Healthy-Control
Comparison 3.Perio-Dfx_1mM vs Perio-Control
Comparison 4.Perio-Dfx_2mM vs Perio-Control
 
 
 

LEfSe - Linear Discriminant Analysis Effect Size

LEfSe (Linear Discriminant Analysis Effect Size) is an alternative method to find "organisms, genes, or pathways that consistently explain the differences between two or more microbial communities" (Segata et al., 2011). Specifically, LEfSe uses rank-based Kruskal-Wallis (KW) sum-rank test to detect features with significant differential (relative) abundance with respect to the class of interest. Since it is rank-based, instead of proportional based, the differential species identified among the comparison groups is less biased (than percent abundance based).

Reference:

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011 Jun 24;12(6):R60. doi: 10.1186/gb-2011-12-6-r60. PMID: 21702898; PMCID: PMC3218848.

 
Healthy-Dfx_1mM vs Healthy-Control
 
 
 
 
 
 
 
LEfSe Results for All Comparisons
 
Comparison No.Comparison Name
Comparison 1.Healthy-Dfx_1mM vs Healthy-Control
Comparison 2.Healthy-Dfx_2mM vs Healthy-Control
Comparison 3.Perio-Dfx_1mM vs Perio-Control
Comparison 4.Perio-Dfx_2mM vs Perio-Control
 
 

XI. Analysis - Heatmap Profile

 

Species vs Sample Abundance Heatmap for All Samples

 
 
 

Heatmaps for Individual Comparisons

 
A) Two-way clustering - clustered on both columns (Samples) and rows (organism)
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Healthy-Dfx_1mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 2Healthy-Dfx_2mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 3Perio-Dfx_1mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
Comparison 4Perio-Dfx_2mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
 
 
B) One-way clustering - clustered on rows (organism) only
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Healthy-Dfx_1mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 2Healthy-Dfx_2mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 3Perio-Dfx_1mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
Comparison 4Perio-Dfx_2mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
 
 
C) No clustering
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Healthy-Dfx_1mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 2Healthy-Dfx_2mM vs Healthy-ControlPDFSVGPDFSVGPDFSVG
Comparison 3Perio-Dfx_1mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
Comparison 4Perio-Dfx_2mM vs Perio-ControlPDFSVGPDFSVGPDFSVG
 
 

XII. Analysis - Network Association

To analyze the co-occurrence or co-exclusion between microbial species among different samples, network correlation analysis tools are usually used for this purpose. However, microbiome count data are compositional. If count data are normalized to the total number of counts in the sample, the data become not independent and traditional statistical metrics (e.g., correlation) for the detection of specie-species relationships can lead to spurious results. In addition, sequencing-based studies typically measure hundreds of OTUs (species) on few samples; thus, inference of OTU-OTU association networks is severely under-powered. Here we use SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues (Kurtz et al., 2015). SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. SPIEC-EASI provides two algorithms for network inferencing – 1) Meinshausen-Bühlmann's neighborhood selection (MB method) and inverse covariance selection (GLASSO method, i.e., graphical least absolute shrinkage and selection operator). This is fundamentally distinct from SparCC, which essentially estimate pairwise correlations. In addition to these two methods, we provide the results of a third method - SparCC (Sparse Correlations for Compositional Data)(Friedman & Alm 2012), which is also a method for inferring correlations from compositional data. SparCC estimates the linear Pearson correlations between the log-transformed components.


References:

Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015 May 7;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226. PMID: 25950956; PMCID: PMC4423992.

Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20. PMID: 23028285; PMCID: PMC3447976.

 

SPIEC-EASI Network Inference by Neighborhood Selection (MB Method)

 

 

 

Association Network Inference by SparCC

 

 

 
 

Copyright FOMC 2022