FOMC Service Report

16S rRNA Gene V1V3 Amplicon Sequencing

Version V1.43

Version History

The Forsyth Institute, Cambridge, MA, USA
June 13, 2023

Project ID: FOMC10949_3


I. Project Summary

Project FOMC10949_3 services include NGS sequencing of the V1V3 region of the 16S rRNA gene amplicons from the samples. First and foremost, please download this report, as well as the sequence raw data from the download links provided below. These links will expire after 60 days. We cannot guarantee the availability of your data after 60 days.

Full Bioinformatics analysis service was requested. We provide many analyses, starting from the raw sequence quality and noise filtering, pair reads merging, as well as chimera filtering for the sequences, using the DADA2 denosing algorithm and pipeline.

We also provide many downstream analyses such as taxonomy assignment, alpha and beta diversity analyses, and differential abundance analysis.

For taxonomy assignment, most informative would be the taxonomy barplots. We provide an interactive barplots to show the relative abundance of microbes at different taxonomy levels (from Phylum to species) that you can choose.

If you specify which groups of samples you want to compare for differential abundance, we provide both ANCOM and LEfSe differential abundance analysis.

 

II. Workflow Checklist

1.Sample Received
2.Sample Quality Evaluated
3.Sample Prepared for Sequencing
4.Next-Gen Sequencing
5.Sequence Quality Check
6.Absolute Abundance
7.Report and Raw Sequence Data Available for Download
8.Bioinformatics Analysis - Reads Processing (DADA2 Quality Trimming, Denoising, Paired Reads Merging)
9.Bioinformatics Analysis - Reads Taxonomy Assignment
10.Bioinformatics Analysis - Alpha Diversity Analysis
11.Bioinformatics Analysis - Beta Diversity Analysis
12.Bioinformatics Analysis - Differential Abundance Analysis
13.Bioinformatics Analysis - Heatmap Profile
14.Bioinformatics Analysis - Network Association
 

III. NGS Sequencing

The samples were processed and analyzed with the ZymoBIOMICS® Service: Targeted Metagenomic Sequencing (Zymo Research, Irvine, CA).

DNA Extraction: If DNA extraction was performed, one of three different DNA extraction kits was used depending on the sample type and sample volume and were used according to the manufacturer’s instructions, unless otherwise stated. The kit used in this project is marked below:

ZymoBIOMICS® DNA Miniprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS® DNA Microprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS®-96 MagBead DNA Kit (Zymo Research, Irvine, CA)
N/A (DNA Extraction Not Performed)
Elution Volume: 50µL
Additional Notes: NA

Targeted Library Preparation: The DNA samples were prepared for targeted sequencing with the Quick-16S™ NGS Library Prep Kit (Zymo Research, Irvine, CA). These primers were custom designed by Zymo Research to provide the best coverage of the 16S gene while maintaining high sensitivity. The primer sets used in this project are marked below:

Quick-16S™ Primer Set V1-V2 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V1-V3 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V3-V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V6-V8 (Zymo Research, Irvine, CA)
Other: NA
Additional Notes: NA

The sequencing library was prepared using an innovative library preparation process in which PCR reactions were performed in real-time PCR machines to control cycles and therefore limit PCR chimera formation. The final PCR products were quantified with qPCR fluorescence readings and pooled together based on equal molarity. The final pooled library was cleaned up with the Select-a-Size DNA Clean & Concentrator™ (Zymo Research, Irvine, CA), then quantified with TapeStation® (Agilent Technologies, Santa Clara, CA) and Qubit® (Thermo Fisher Scientific, Waltham, WA).

Control Samples: The ZymoBIOMICS® Microbial Community Standard (Zymo Research, Irvine, CA) was used as a positive control for each DNA extraction, if performed. The ZymoBIOMICS® Microbial Community DNA Standard (Zymo Research, Irvine, CA) was used as a positive control for each targeted library preparation. Negative controls (i.e. blank extraction control, blank library preparation control) were included to assess the level of bioburden carried by the wet-lab process.

Sequencing: The final library was sequenced on Illumina® MiSeq™ with a V3 reagent kit (600 cycles). The sequencing was performed with 10% PhiX spike-in.

Absolute Abundance Quantification*: A quantitative real-time PCR was set up with a standard curve. The standard curve was made with plasmid DNA containing one copy of the 16S gene and one copy of the fungal ITS2 region prepared in 10-fold serial dilutions. The primers used were the same as those used in Targeted Library Preparation. The equation generated by the plasmid DNA standard curve was used to calculate the number of gene copies in the reaction for each sample. The PCR input volume (2 µl) was used to calculate the number of gene copies per microliter in each DNA sample.
The number of genome copies per microliter DNA sample was calculated by dividing the gene copy number by an assumed number of gene copies per genome. The value used for 16S copies per genome is 4. The value used for ITS copies per genome is 200. The amount of DNA per microliter DNA sample was calculated using an assumed genome size of 4.64 x 106 bp, the genome size of Escherichia coli, for 16S samples, or an assumed genome size of 1.20 x 107 bp, the genome size of Saccharomyces cerevisiae, for ITS samples. This calculation is shown below:

Calculated Total DNA = Calculated Total Genome Copies × Assumed Genome Size (4.64 × 106 bp) ×
Average Molecular Weight of a DNA bp (660 g/mole/bp) ÷ Avogadro’s Number (6.022 x 1023/mole)


* Absolute Abundance Quantification is only available for 16S and ITS analyses.

The absolute abundance standard curve data can be viewed in Excel here:

The absolute abundance standard curve is shown below:

Absolute Abundance Standard Curve

 

IV. Complete Report Download

The complete report of your project, including all links in this report, can be downloaded by clicking the link provided below. The downloaded file is a compressed ZIP file and once unzipped, open the file “REPORT.html” (may only shown as "REPORT" in your computer) by double clicking it. Your default web browser will open it and you will see the exact content of this report.

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Complete report download link:

To view the report, please follow the following steps:
1.Download the .zip file from the report link above.
2.Extract all the contents of the downloaded .zip file to your desktop.
3.Open the extracted folder and find the "REPORT.html" (may shown as only "REPORT").
4.Open (double-clicking) the REPORT.html file. Your default browser will open the top age of the complete report. Within the report, there are links to view all the analyses performed for the project.

 

V. Raw Sequence Data Download

The raw NGS sequence data is available for download with the link provided below. The data is a compressed ZIP file and can be unzipped to individual sequence files. Since this is a pair-end sequencing, each of your samples is represented by two sequence files, one for READ 1, with the file extension “*_R1.fastq.gz”, another READ 2, with the file extension “*_R1.fastq.gz”. The files are in FASTQ format and are compressed. FASTQ format is a text-based data format for storing both a biological sequence and its corresponding quality scores. Most sequence analysis software will be able to open them. The Sample IDs associated with the R1 and R2 fastq files are listed in the table below:

Sample IDOriginal Sample IDRead 1 File NameRead 2 File Name
F10949.S10original sample ID herezr10949_10V1V3_R1.fastq.gzzr10949_10V1V3_R2.fastq.gz
F10949.S11original sample ID herezr10949_11V1V3_R1.fastq.gzzr10949_11V1V3_R2.fastq.gz
F10949.S12original sample ID herezr10949_12V1V3_R1.fastq.gzzr10949_12V1V3_R2.fastq.gz
F10949.S13original sample ID herezr10949_13V1V3_R1.fastq.gzzr10949_13V1V3_R2.fastq.gz
F10949.S14original sample ID herezr10949_14V1V3_R1.fastq.gzzr10949_14V1V3_R2.fastq.gz
F10949.S15original sample ID herezr10949_15V1V3_R1.fastq.gzzr10949_15V1V3_R2.fastq.gz
F10949.S16original sample ID herezr10949_16V1V3_R1.fastq.gzzr10949_16V1V3_R2.fastq.gz
F10949.S01original sample ID herezr10949_1V1V3_R1.fastq.gzzr10949_1V1V3_R2.fastq.gz
F10949.S02original sample ID herezr10949_2V1V3_R1.fastq.gzzr10949_2V1V3_R2.fastq.gz
F10949.S03original sample ID herezr10949_3V1V3_R1.fastq.gzzr10949_3V1V3_R2.fastq.gz
F10949.S04original sample ID herezr10949_4V1V3_R1.fastq.gzzr10949_4V1V3_R2.fastq.gz
F10949.S05original sample ID herezr10949_5V1V3_R1.fastq.gzzr10949_5V1V3_R2.fastq.gz
F10949.S06original sample ID herezr10949_6V1V3_R1.fastq.gzzr10949_6V1V3_R2.fastq.gz
F10949.S07original sample ID herezr10949_7V1V3_R1.fastq.gzzr10949_7V1V3_R2.fastq.gz
F10949.S08original sample ID herezr10949_8V1V3_R1.fastq.gzzr10949_8V1V3_R2.fastq.gz

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Raw sequence data download link:

 

VI. Analysis - DADA2 Read Processing

What is DADA2?

DADA2 is a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. DADA2 identified more real variants and output fewer spurious sequences than other methods.

DADA2’s advantage is that it uses more of the data. The DADA2 error model incorporates quality information, which is ignored by all other methods after filtering. The DADA2 error model incorporates quantitative abundances, whereas most other methods use abundance ranks if they use abundance at all. The DADA2 error model identifies the differences between sequences, eg. A->C, whereas other methods merely count the mismatches. DADA2 can parameterize its error model from the data itself, rather than relying on previous datasets that may or may not reflect the PCR and sequencing protocols used in your study.

DADA2 Publication: Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016 Jul;13(7):581-3. doi: 10.1038/nmeth.3869. Epub 2016 May 23. PMID: 27214047; PMCID: PMC4927377.

DADA2 Software Package is available as an R package at : https://benjjneb.github.io/dada2/index.html

Analysis Procedures:

DADA2 pipeline includes several tools for read quality control, including quality filtering, trimming, denoising, pair merging and chimera filtering. Below are the major processing steps of DADA2:

Step 1. Read trimming based on sequence quality The quality of NGS Illumina sequences often decreases toward the end of the reads. DADA2 allows to trim off the poor quality read ends in order to improve the error model building and pair mergicing performance.

Step 2. Learn the Error Rates The DADA2 algorithm makes use of a parametric error model (err) and every amplicon dataset has a different set of error rates. The learnErrors method learns this error model from the data, by alternating estimation of the error rates and inference of sample composition until they converge on a jointly consistent solution. As in many machine-learning problems, the algorithm must begin with an initial guess, for which the maximum possible error rates in this data are used (the error rates if only the most abundant sequence is correct and all the rest are errors).

Step 3. Infer amplicon sequence variants (ASVs) based on the error model built in previous step. This step is also called sequence "denoising". The outcome of this step is a list of ASVs that are the equivalent of oligonucleotides.

Step 4. Merge paired reads. If the sequencing products are read pairs, DADA2 will merge the R1 and R2 ASVs into single sequences. Merging is performed by aligning the denoised forward reads with the reverse-complement of the corresponding denoised reverse reads, and then constructing the merged “contig” sequences. By default, merged sequences are only output if the forward and reverse reads overlap by at least 12 bases, and are identical to each other in the overlap region (but these conditions can be changed via function arguments).

Step 5. Remove chimera. The core dada method corrects substitution and indel errors, but chimeras remain. Fortunately, the accuracy of sequence variants after denoising makes identifying chimeric ASVs simpler than when dealing with fuzzy OTUs. Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a right-segment from two more abundant “parent” sequences. The frequency of chimeric sequences varies substantially from dataset to dataset, and depends on on factors including experimental procedures and sample complexity.

Results

1. Read Quality Plots NGS sequence analaysis starts with visualizing the quality of the sequencing. Below are the quality plots of the first sample for the R1 and R2 reads separately. In gray-scale is a heat map of the frequency of each quality score at each base position. The mean quality score at each position is shown by the green line, and the quartiles of the quality score distribution by the orange lines. The forward reads are usually of better quality. It is a common practice to trim the last few nucleotides to avoid less well-controlled errors that can arise there. The trimming affects the downstream steps including error model building, merging and chimera calling. FOMC uses an empirical approach to test many combinations of different trim length in order to achieve best final amplicon sequence variants (ASVs), see the next section “Optimal trim length for ASVs”.

Quality plots for all samples:

2. Optimal trim length for ASVs The final number of merged and chimera-filtered ASVs depends on the quality filtering (hence trimming) in the very beginning of the DADA2 pipeline. In order to achieve highest number of ASVs, an empirical approach was used -

  1. Create a random subset of each sample consisting of 5,000 R1 and 5,000 R2 (to reduce computation time)
  2. Trim 10 bases at a time from the ends of both R1 and R2 up to 50 bases
  3. For each combination of trimmed length (e.g., 300x300, 300x290, 290x290 etc), the trimmed reads are subject to the entire DADA2 pipeline for chimera-filtered merged ASVs
  4. The combination with highest percentage of the input reads becoming final ASVs is selected for the complete set of data

Below is the result of such operation, showing ASV percentages of total reads for all trimming combinations (1st Column = R1 lengths in bases; 1st Row = R2 lengths in bases):

R1/R2281271261251241231
32138.35%38.23%38.86%38.75%32.38%30.95%
31138.41%38.43%39.17%34.20%31.09%29.78%
30137.87%38.04%33.31%30.78%29.09%22.87%
29137.43%32.01%30.56%29.41%22.99%6.75%
28131.41%30.13%28.79%23.57%6.67%3.88%
27130.22%29.06%23.52%6.99%4.04%1.99%

Based on the above result, the trim length combination of R1 = 311 bases and R2 = 261 bases (highlighted red above), was chosen for generating final ASVs for all sequences. This combination generated highest number of merged non-chimeric ASVs and was used for downstream analyses, if requested.

3. Error plots from learning the error rates After DADA2 building the error model for the set of data, it is always worthwhile, as a sanity check if nothing else, to visualize the estimated error rates. The error rates for each possible transition (A→C, A→G, …) are shown below. Points are the observed error rates for each consensus quality score. The black line shows the estimated error rates after convergence of the machine-learning algorithm. The red line shows the error rates expected under the nominal definition of the Q-score. The ideal result would be the estimated error rates (black line) are a good fit to the observed rates (points), and the error rates drop with increased quality as expected.

Forward Read R1 Error Plot


Reverse Read R2 Error Plot

The PDF version of these plots are available here:

 

4. DADA2 Result Summary The table below shows the summary of the DADA2 analysis, tracking paired read counts of each samples for all the steps during DADA2 denoising process - including end-trimming (filtered), denoising (denoisedF, denoisedF), pair merging (merged) and chimera removal (nonchim).

Sample IDF10949.S01F10949.S02F10949.S03F10949.S04F10949.S05F10949.S06F10949.S07F10949.S08F10949.S10F10949.S11F10949.S12F10949.S13F10949.S14F10949.S15F10949.S16Row SumPercentage
input15,97115,54916,38119,63015,91318,95517,29815,62520,02217,35816,70218,51817,95028,01517,318271,205100.00%
filtered11,96811,67512,35314,71511,95114,21213,02511,74614,98613,07212,57013,86213,41521,19813,032203,78075.14%
denoisedF11,28110,80011,60714,24611,47413,80012,41911,15014,63712,70912,03813,39812,86720,37512,637195,43872.06%
denoisedR11,32411,05911,77114,14711,50413,68812,40311,06514,53512,57412,04513,42012,88520,52512,636195,58172.12%
merged9,3738,8119,88312,64910,13612,17410,4618,99413,28111,17910,53712,15011,13918,17811,386170,33162.81%
nonchim4,6115,7165,2289,0785,5616,3176,0955,6588,0777,8147,1006,3927,09810,8697,366102,98037.97%

This table can be downloaded as an Excel table below:

 

5. DADA2 Amplicon Sequence Variants (ASVs). A total of 1555 unique merged and chimera-free ASV sequences were identified, and their corresponding read counts for each sample are available in the "ASV Read Count Table" with rows for the ASV sequences and columns for sample. This read count table can be used for microbial profile comparison among different samples and the sequences provided in the table can be used to taxonomy assignment.

 

The table can be downloaded from this link:

 
 

Sample Meta Information

Download Sample Meta Information
#SampleIDSample NameGroup
F10949.S01WT.Base1WT Normal
F10949.S02WT.Base2WT Normal
F10949.S03WT.Base3WT Normal
F10949.S04WT.HFD1WT HFD
F10949.S05WT.HFD2WT HFD
F10949.S06WT.HFD3WT HFD
F10949.S07SAA3KO.Base1SAA KO Normal
F10949.S08SAA3KO.Base2SAA KO Normal
F10949.S10SAA3KO.HFD1SAA KO HFD
F10949.S11SAA3KO.HFD2SAA KO HFD
F10949.S12SAA3KO.HFD3SAA KO HFD
F10949.S13SAA3KO.HFD4SAA KO HFD
F10949.S14SAA3KO.BL.HFD1SAA KO BL HFD
F10949.S15SAA3KO.BL.HFD2SAA KO BL HFD
F10949.S16SAA3KO.BL.HFD3SAA KO BL HFD
 
 

ASV Read Counts by Samples

#Sample IDRead Count
F10949.S014,611
F10949.S035,228
F10949.S055,561
F10949.S085,658
F10949.S025,716
F10949.S076,095
F10949.S066,317
F10949.S136,392
F10949.S147,098
F10949.S127,100
F10949.S167,366
F10949.S117,814
F10949.S108,077
F10949.S049,078
F10949.S1510,869
 
 
 

VII. Analysis - Read Taxonomy Assignment

Read Taxonomy Assignment - Methods

 

The species-level, open-reference 16S rRNA NGS reads taxonomy assignment pipeline

Version 20210310
 

1. Raw sequences reads in FASTA format were BLASTN-searched against a combined set of 16S rRNA reference sequences. It consists of MOMD (version 0.1), the HOMD (version 15.2 http://www.homd.org/index.php?name=seqDownload&file&type=R ), HOMD 16S rRNA RefSeq Extended Version 1.1 (EXT), GreenGene Gold (GG) (http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/gold_strains_gg16S_aligned.fasta.gz) , and the NCBI 16S rRNA reference sequence set (https://ftp.ncbi.nlm.nih.gov/blast/db/16S_ribosomal_RNA.tar.gz). These sequences were screened and combined to remove short sequences (<1000nt), chimera, duplicated and sub-sequences, as well as sequences with poor taxonomy annotation (e.g., without species information). This process resulted in 1,015 from HOMD V15.22, 495 from EXT, 3,940 from GG and 18,044 from NCBI, a total of 25,120 sequences. Altogether these sequence represent a total of 15,601 oral and non-oral microbial species.

The NCBI BLASTN version 2.7.1+ (Zhang et al, 2000) was used with the default parameters. Reads with ≥ 98% sequence identity to the matched reference and ≥ 90% alignment length (i.e., ≥ 90% of the read length that was aligned to the reference and was used to calculate the sequence percent identity) were classified based on the taxonomy of the reference sequence with highest sequence identity. If a read matched with reference sequences representing more than one species with equal percent identity and alignment length, it was subject to chimera checking with USEARCH program version v8.1.1861 (Edgar 2010). Non-chimeric reads with multi-species best hits were considered valid and were assigned with a unique species notation (e.g., spp) denoting unresolvable multiple species.

2. Unassigned reads (i.e., reads with < 98% identity or < 90% alignment length) were pooled together and reads < 200 bases were removed. The remaining reads were subject to the de novo operational taxonomy unit (OTU) calling and chimera checking using the USEARCH program version v8.1.1861 (Edgar 2010). The de novo OTU calling and chimera checking was done using 98% as the sequence identity cutoff, i.e., the species-level OTU. The output of this step produced species-level de novo clustered OTUs with 98% identity. Representative reads from each of the OTUs/species were then BLASTN-searched against the same reference sequence set again to determine the closest species for these potential novel species. These potential novel species were pooled together with the reads that were signed to specie-level in the previous step, for down-stream analyses.

Reference:
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12. PubMed PMID: 20709691.

3. Designations used in the taxonomy:

	1) Taxonomy levels are indicated by these prefixes:
	
	   k__: domain/kingdom
	   p__: phylum
	   c__: class
	   o__: order
	   f__: family
	   g__: genus  
	   s__: species
	
	   Example: 
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__faecis
		
	2) Unique level identified – known species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__hominis
	
	   The above example shows some reads match to a single species (all levels are unique)
	
	3) Non-unique level identified – known species:

	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__multispecies_spp123_3
	   
	   The above example “s__multispecies_spp123_3” indicates certain reads equally match to 3 species of the 
	   genus Roseburia; the “spp123” is a temporally assigned species ID.
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__multigenus;s__multispecies_spp234_5
	   
	   The above example indicates certain reads match equally to 5 different species, which belong to multiple genera.; 
	   the “spp234” is a temporally assigned species ID.
	
	4) Unique level identified – unknown species, potential novel species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ hominis_nov_97%
	   
	   The above example indicates that some reads have no match to any of the reference sequences with 
	   sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. However this groups 
	   of reads (actually the representative read from a de novo  OTU) has 96% percent identity to 
	   Roseburia hominis, thus this is a potential novel species, closest to Roseburia hominis. 
	   (But they are not the same species).
	
	5) Multiple level identified – unknown species, potential novel species:
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ multispecies_sppn123_3_nov_96%
	
	   The above example indicates that some reads have no match to any of the reference sequences 
	   with sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. 
	   However this groups of reads (actually the representative read from a de novo  OTU) 
	   has 96% percent identity equally to 3 species in Roseburia. Thus this is no single 
	   closest species, instead this group of reads match equally to multiple species at 96%. 
	   Since they have passed chimera check so they represent a novel species. “sppn123” is a 
	   temporary ID for this potential novel species. 

 
4. The taxonomy assignment algorithm is illustrated in this flow char below:
 
 
 
 

Read Taxonomy Assignment - Result Summary *

CodeCategoryMPC=0% (>=1 read)MPC=0.01%(>=10 reads)
ATotal reads102,980102,980
BTotal assigned reads102,405102,405
CAssigned reads in species with read count < MPC0193
DAssigned reads in samples with read count < 50000
ETotal samples1515
FSamples with reads >= 5001515
GSamples with reads < 50000
HTotal assigned reads used for analysis (B-C-D)102,405102,212
IReads assigned to single species67,08567,085
JReads assigned to multiple species30
KReads assigned to novel species35,31735,127
LTotal number of species285249
MNumber of single species4141
NNumber of multi-species10
ONumber of novel species243208
PTotal unassigned reads575575
QChimeric reads66
RReads without BLASTN hits00
SOthers: short, low quality, singletons, etc.569569
A=B+P=C+D+H+Q+R+S
E=F+G
B=C+D+H
H=I+J+K
L=M+N+O
P=Q+R+S
* MPC = Minimal percent (of all assigned reads) read count per species, species with read count < MPC were removed.
* Samples with reads < 500 were removed from downstream analyses.
* The assignment result from MPC=0.1% was used in the downstream analyses.
 
 
 

Read Taxonomy Assignment - ASV Species-Level Read Counts Table

This table shows the read counts for each sample (columns) and each species identified based on the ASV sequences. The downstream analyses were based on this table.
SPIDTaxonomyF10949.S01F10949.S02F10949.S03F10949.S04F10949.S05F10949.S06F10949.S07F10949.S08F10949.S10F10949.S11F10949.S12F10949.S13F10949.S14F10949.S15F10949.S16
SP1Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Faecalibaculum;rodentium621573954226959000000000
SP10Bacteria;Firmicutes;Clostridia;Eubacteriales;Peptococcaceae;Peptococcaceae_[G-1];bacterium_MOT-146070070161614035017125
SP11Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;disporicum1079210304844000000000
SP12Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Helicobacteraceae;Helicobacter;hepaticus00000490001900121240
SP13Bacteria;Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Akkermansiaceae;Akkermansia;muciniphila62716042161780000476001040
SP14Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;caecimuris00000023230000000
SP15Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Sutterellaceae;Parasutterella;excrementihominis00024130000000000
SP16Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Bacteroidaceae;Phocaeicola;sartorii0000001631983213851036020
SP17Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Lactococcus;lactis0005910600015611709301110
SP18Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Parabacteroides;goldsteinii00000000054580151059
SP19Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-1];bacterium_MOT-15916400000000000000
SP2Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Erysipelatoclostridium;[Clostridium] cocleatum00056381503205500189532223309581313735711987
SP20Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-3];bacterium_MOT-16342210000000000000
SP21Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-2];bacterium_MOT-162716031000000000000
SP22Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;danieliae1800833338383512311352287316641
SP23Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Lactococcus;cremoris00013308600176196157158114238112
SP24Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;acidifaciens0001066064142690091360025
SP25Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri0000001051250000000
SP26Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus;gasseri3557044001577928719302710168323
SP27Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Microbacteriaceae;Microbacterium;kitamiense000000009500000
SP28Bacteria;Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus;gallinarum0000000000000140
SP29Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Coriobacteriaceae;Parvibacter;caecicola0003200002024000390
SP3Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Ligilactobacillus;murinus000635805532379316126086328813052421249736
SP30Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Helicobacteraceae;Helicobacter;ganmani00000094107005400850
SP31Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-3];bacterium_MOT-1680000000001626078860
SP32Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-18517900000000000000
SP33Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-1];bacterium_MOT-1660038000000000000
SP34Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-4];bacterium_MOT-16486055000000000000
SP35Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-7];bacterium_MOT-1548013000000000000
SP36Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Bacteroidaceae;Phocaeicola;vulgatus0009511097000000000
SP37Bacteria;Actinobacteria;Coriobacteriia;Eggerthellales;Eggerthellaceae;Adlercreutzia;mucosicola00085002403410593052610
SP4Bacteria;Firmicutes;Clostridia;Eubacteriales;Peptostreptococcaceae;Romboutsia;ilealis00002691070000000000
SP40Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Microbacteriaceae;Microbacterium;foliorum0000000014700000
SP41Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-6];bacterium_MOT-153194754000000000000
SP42Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Acetatifactor;muris0000100000000000
SP43Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp._MOT-0120000000001200000
SP5Bacteria;Actinobacteria;Coriobacteriia;Eggerthellales;Eggerthellaceae;Adlercreutzia;muris00013593402533384000400
SP6Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus;johnsonii14510855303401413419280217510247138215322765
SP7Bacteria;Actinobacteria;Coriobacteriia;Eggerthellales;Eggerthellaceae;Adlercreutzia;caecimuris000124047578813496245647924859
SP8Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Limosilactobacillus;reuteri0000002119116119293760104809
SP9Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Parabacteroides;distasonis000000180000015016
SPN1Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_93.241%0190000000000000
SPN10Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-185_nov_93.333%000000000600090
SPN100Bacteria;Firmicutes;Clostridia;Clostridiales;Eubacteriaceae_[XV];Eubacterium;ramulus_nov_91.296%371490000000000000
SPN101Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-3];bacterium_MOT-168_nov_94.653%061960000200000000
SPN102Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Lawsonibacter;asaccharolyticus_nov_91.571%521250000000000000
SPN103Bacteria;Actinobacteria;Coriobacteriia;Eggerthellales;Eggerthellaceae;Adlercreutzia;caecimuris_nov_94.000%00023000016323600690
SPN104Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Lancefieldella;parvula_nov_91.552%364892000000000000
SPN105Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_93.861%7000000033258302400
SPN106Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-9];bacterium_MOT-174_nov_90.234%134028000000000000
SPN107Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Faecalibaculum;rodentium_nov_96.571%00021495614506543000429000
SPN108Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;shahii_nov_87.054%0000004792500000000
SPN109Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Mediterraneibacter;[Ruminococcus] torques_nov_94.212%0000000074460130370
SPN11Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-185_nov_93.517%00000000005503400
SPN110Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Anaerotruncus;rubiinfantis_nov_91.506%0000000000260115280
SPN111Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Sporobacter;termitidis_nov_82.970%5254000031240000000
SPN112Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Anaerotignum;lactatifermentans_nov_95.577%0001021000004507660
SPN113Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Microbacteriaceae;Leifsonia;kafniensis_nov_84.158%137190000000000000
SPN114Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-7];bacterium_MOT-172_nov_93.204%041000001070000000
SPN115Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-7];bacterium_MOT-172_nov_91.945%08067000000000000
SPN116Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-185_nov_92.353%00000066730000000
SPN117Bacteria;Actinobacteria;Coriobacteriia;Eggerthellales;Eggerthellaceae;Adlercreutzia;caecimuris_nov_95.382%0000000080000000
SPN118Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_90.152%00000078610000000
SPN119Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfovibrionaceae;Mailhella;massiliensis_nov_90.377%00000000693234801774914
SPN12Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Eisenbergiella;massiliensis_nov_92.969%0000000000150000
SPN120Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_87.896%00000073560000000
SPN121Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Sutterellaceae;Parasutterella;excrementihominis_nov_94.584%000000704000001700
SPN122Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Phocea;massiliensis_nov_90.297%346032000000000000
SPN123Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Pseudoflavonifractor;phocaeensis_nov_95.761%05027242900002800110
SPN124Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Anaerotignum;aminivorans_nov_93.173%06657000000000000
SPN125Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Blautia;producta_nov_96.132%000017000000083022
SPN126Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-9];bacterium_MOT-174_nov_86.957%00001210000000000
SPN127Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-176_nov_92.885%00000037830000000
SPN128Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-4];bacterium_MOT-151_nov_93.491%00000000110680000
SPN129Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Tyzzerella;[Clostridium] colinum_nov_88.494%01190000000000000
SPN13Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-182_nov_87.160%0140000000000000
SPN130Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-7];bacterium_MOT-172_nov_86.508%01150000000000000
SPN131Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Caproicibacter;fermentans_nov_89.864%0000000691068954407318723
SPN132Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-12];bacterium_MOT-180_nov_89.942%0271500031410000000
SPN133Bacteria;Firmicutes;Clostridia;Clostridiales;Eubacteriaceae_[XV];Eubacterium;coprostanoligenes_nov_91.892%54057000000000000
SPN134Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-7];bacterium_MOT-172_nov_92.843%002500059260000000
SPN135Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_87.759%00000077330000000
SPN136Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-3];bacterium_MOT-168_nov_95.059%00000036740000000
SPN137Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-7];bacterium_MOT-172_nov_86.047%187021000000000000
SPN138Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Mediterraneibacter;[Ruminococcus] torques_nov_95.200%00046620000000000
SPN139Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] polysaccharolyticum_nov_92.664%0760000000000000
SPN14Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-1];bacterium_MOT-129_nov_86.590%6094427970002501190000000
SPN140Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-2];bacterium_MOT-167_nov_89.349%07929000000000000
SPN141Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Fusicatenibacter;saccharivorans_nov_90.514%000000039002500420
SPN142Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] scindens_nov_89.827%00910000140000000
SPN143Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-1];bacterium_MOT-129_nov_89.768%0000003122780000000
SPN144Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-182_nov_89.200%00000000000001050
SPN145Bacteria;Firmicutes;Clostridia;Clostridiales;Eubacteriaceae_[XV];Eubacterium;oxidoreducens_nov_88.846%233348000000000000
SPN146Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_89.077%00000050530000000
SPN147Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Acutalibacter;muris_nov_94.264%313042000000000000
SPN148Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Phocea;massiliensis_nov_90.239%512032000000000000
SPN149Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] polysaccharolyticum_nov_88.462%434001900000000000
SPN15Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-3];bacterium_MOT-150_nov_93.910%0150000002612890147810
SPN150Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-13];bacterium_MOT-181_nov_91.634%040000018150000000
SPN151Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_89.905%000000493551300000
SPN152Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-6];bacterium_MOT-171_nov_94.841%0000320027000019220
SPN153Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Anaerotignum;aminivorans_nov_92.585%00000031690000000
SPN154Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Faecalicatena;orotica_nov_94.553%000000000021110670
SPN155Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales Family XIII. Incertae Sedis;Ihubacter;massiliensis_nov_94.402%001200000042380382086
SPN156Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;collagenovorans_nov_83.466%19530000000000000
SPN157Bacteria;Firmicutes;Tissierellia;Tissierellales;Thermohalobacteraceae;Sporosalibacterium;tautonense_nov_82.659%0000400670000000
SPN158Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Absiella;tortuosum_nov_88.725%00000029410000000
SPN159Bacteria;Actinobacteria;Coriobacteriia;Eggerthellales;Eggerthellaceae;Adlercreutzia;caecimuris_nov_92.277%2215000018150000000
SPN16Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-4];bacterium_MOT-151_nov_95.858%1400000000000000
SPN160Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillibacter;valericigenes_nov_95.164%0680000000000000
SPN161Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Faecalicatena;fissicatena_nov_94.521%961542812000360000252420
SPN162Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-183_nov_97.967%00000038300000000
SPN163Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-3];bacterium_MOT-168_nov_95.050%0006500000000000
SPN164Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Faecalicatena;fissicatena_nov_94.129%000000221700000260
SPN165Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Breznakia;pachnodae_nov_83.181%281324000000000000
SPN166Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Hathewaya;proteolytica_nov_84.970%0640000000000000
SPN167Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] polysaccharolyticum_nov_90.751%2750596400424334360050730
SPN168Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Parabacteroides;merdae_nov_93.182%00000044200000000
SPN169Bacteria;Firmicutes;Clostridia;Clostridiales;Eubacteriaceae_[XV];Eubacterium;ramulus_nov_89.362%0630000000000000
SPN17Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus;gasseri_nov_93.345%0000000014000000
SPN170Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Eisenbergiella;massiliensis_nov_86.127%03923000000000000
SPN171Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-7];bacterium_MOT-172_nov_94.831%0000000610000000
SPN172Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Faecalibaculum;rodentium_nov_96.571%00000150000082000
SPN173Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-3];bacterium_MOT-168_nov_96.252%0570000000000000
SPN174Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-9];bacterium_MOT-174_nov_92.216%0550000000000000
SPN175Bacteria;Actinobacteria;Coriobacteriia;Eggerthellales;Eggerthellaceae;Adlercreutzia;caecimuris_nov_92.644%00000014410000000
SPN176Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] scindens_nov_90.211%0000000000000550
SPN177Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_88.598%0005500000000000
SPN178Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] polysaccharolyticum_nov_92.636%00000000004213000
SPN179Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-6];bacterium_MOT-171_nov_94.083%00000034573150126054780
SPN18Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-5];bacterium_MOT-170_nov_97.614%0001300000000000
SPN180Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-178_nov_95.358%02925000000000000
SPN181Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Faecalicatena;fissicatena_nov_95.499%0054000000000000
SPN182Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-185_nov_94.726%00000024290000000
SPN183Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Pseudoflavonifractor;phocaeensis_nov_92.131%001900000000062140
SPN184Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Hydrogenoanaerobacterium;saccharovorans_nov_90.522%0000000000430090
SPN185Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Pseudoflavonifractor;phocaeensis_nov_86.756%18340000000000000
SPN186Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Phocea;massiliensis_nov_90.060%00000013380000000
SPN187Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;phytofermentans_nov_89.057%5100000000000000
SPN188Bacteria;Firmicutes;Clostridia;Clostridiales;Eubacteriaceae_[XV];Eubacterium;coprostanoligenes_nov_90.476%201501600000000000
SPN189Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_89.013%00000031200000000
SPN19Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-1];bacterium_MOT-159_nov_93.976%0000001300000000
SPN190Bacteria;Firmicutes;Clostridia;Clostridiales;Clostridiales_[F-1];Clostridiales_[F-1][G-1];bacterium HMT093 nov_84.298%4900000000000000
SPN191Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-4];bacterium_MOT-151_nov_94.477%0008947000007728538217
SPN192Bacteria;Firmicutes;Clostridia;Clostridiales;Clostridiales_[F-1];Clostridiales_[F-1][G-1];bacterium HMT093 nov_91.892%28210000000000000
SPN193Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Neglectibacter;timonensis_nov_94.318%000000018170110000
SPN194Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Eisenbergiella;massiliensis_nov_87.669%0009500000000000
SPN195Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_87.453%00000023220000000
SPN196Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-3];bacterium HMT351 nov_95.551%00000029160000000
SPN197Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Butyrivibrio;sp. HMT455 nov_83.556%0440000000000000
SPN198Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_89.544%0000004400000000
SPN199Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_96.640%0000000430000000
SPN2Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-176_nov_94.798%000000092000361341100
SPN20Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Anaerotruncus;rubiinfantis_nov_92.636%0000012000000000
SPN200Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Faecalicatena;fissicatena_nov_93.810%0000000000000410
SPN201Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Sporobacter;termitidis_nov_88.294%111018000000000000
SPN202Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-1];bacterium_MOT-159_nov_88.550%20018000000000000
SPN203Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lacrimispora;xylanolytica_nov_93.969%000406260002001131269013
SPN204Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_93.452%0370000000000000
SPN205Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-182_nov_92.480%0000000000000930
SPN206Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-3];bacterium_MOT-150_nov_91.585%0000000000000370
SPN207Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-4];bacterium_MOT-164_nov_97.980%0370000000000000
SPN208Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_95.276%3700000000000000
SPN209Bacteria;Actinobacteria;Coriobacteriia;Eggerthellales;Eggerthellaceae;Adlercreutzia;equolifaciens_nov_94.389%0036000000000000
SPN21Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Cuneatibacter;caecimuris_nov_92.278%0000000000000120
SPN210Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-176_nov_89.981%0340000000000000
SPN211Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Eisenbergiella;massiliensis_nov_88.484%00000000000160017
SPN212Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] polysaccharolyticum_nov_89.443%0320000000000000
SPN213Bacteria;Firmicutes;Mollicutes;Mollicutes_[O-2];Mollicutes_[F-2];Mollicutes_[G-2];bacterium_MOT-187_nov_93.284%2650000000000000
SPN214Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Longibaculum;muris_nov_90.392%0000000900000021
SPN215Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Faecalicatena;fissicatena_nov_93.580%1920194000000000000
SPN216Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-178_nov_96.332%0930000000000000
SPN217Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_83.895%0000000000000300
SPN218Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Lawsonibacter;asaccharolyticus_nov_91.379%15150000000000000
SPN219Bacteria;Actinobacteria;Coriobacteriia;Eggerthellales;Eggerthellaceae;Adlercreutzia;muris_nov_89.506%00018001000000000
SPN22Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-176_nov_94.981%00000000000031560
SPN220Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-2];bacterium_MOT-167_nov_97.018%0027000000000000
SPN221Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Roseburia;hominis_nov_91.715%2700000000000000
SPN222Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Acetivibrio;cellulolyticus_nov_83.644%11000000150000000
SPN223Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfovibrionaceae;Mailhella;massiliensis_nov_89.888%0000009000100600
SPN224Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Faecalimonas;umbilicata_nov_92.692%0240000000000000
SPN225Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Anaerotignum;aminivorans_nov_92.600%0240000000000000
SPN226Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Blautia;producta_nov_95.174%2400000000000000
SPN227Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-178_nov_93.064%05043000000000000
SPN228Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-6];bacterium_MOT-171_nov_93.307%0104274000000000000
SPN229Bacteria;Firmicutes;Mollicutes;Mollicutes_[O-2];Mollicutes_[F-2];Mollicutes_[G-2];bacterium_MOT-187_nov_90.841%1309000000000000
SPN23Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Anaerotruncus;rubiinfantis_nov_87.931%0000000100000000
SPN230Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-178_nov_91.715%0022000000000000
SPN231Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT473 nov_90.177%0000000002200000
SPN232Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-6];bacterium_MOT-171_nov_93.254%0220000000000000
SPN233Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Eisenbergiella;massiliensis_nov_87.308%0210000000000000
SPN234Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lacrimispora;xylanolytica_nov_92.308%0000000200000000
SPN235Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Muricomes;intestini_nov_89.921%0200000000000000
SPN236Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillibacter;valericigenes_nov_93.654%9110000000000000
SPN237Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Kineothrix;alysoides_nov_87.352%0000000190000000
SPN238Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] aminophilum_nov_87.476%37053000000000000
SPN24Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Hydrogenoanaerobacterium;saccharovorans_nov_88.439%0100000000000000
SPN26Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Blautia;faecicola_nov_89.709%08367000231900000000
SPN3Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-178_nov_94.220%0019000000000000
SPN32Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Lawsonibacter;asaccharolyticus_nov_90.421%42045000000000000
SPN38Bacteria;Tenericutes;Mollicutes;Anaeroplasmatales;Anaeroplasmataceae;Anaeroplasma;abactoclasticum_nov_87.352%257950000000000000
SPN4Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Breznakia;pachnodae_nov_81.284%0001800000000000
SPN42Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] aminophilum_nov_89.961%000105155000753316503900
SPN49Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;uniformis_nov_95.594%0000001031444737000170
SPN5Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Lawsonibacter;asaccharolyticus_nov_92.514%0000000170000000
SPN53Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Hydrogenoanaerobacterium;saccharovorans_nov_88.395%00024620000000000
SPN6Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Cuneatibacter;caecimuris_nov_92.486%080000000000090
SPN60Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lacrimispora;xylanolytica_nov_91.992%000000005337149075320
SPN63Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-12];bacterium_MOT-179_nov_94.737%016000031360000000
SPN66Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Eisenbergiella;massiliensis_nov_90.805%381729300024180000000
SPN67Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lacrimispora;xylanolytica_nov_94.314%281047400045930000000
SPN68Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-177_nov_95.874%79760000771100000000
SPN69Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-6];bacterium_MOT-171_nov_94.643%069123000441020000000
SPN7Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Acetivibrio;cellulolyticus_nov_84.058%0160000000000000
SPN70Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_95.050%868232020037000570000
SPN71Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Eisenbergiella;massiliensis_nov_88.697%00001790005792123017713249
SPN72Bacteria;Bacteroidetes;Bacteroidetes_[C-1];Bacteroidetes_[O-1];Bacteroidetes_[F-1];Bacteroidetes_[G-3];bacterium HMT436 nov_85.575%000794767000000601645
SPN73Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] scindens_nov_88.247%03102716000027520667318
SPN74Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-1];bacterium_MOT-129_nov_87.308%000000332300270000
SPN75Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-176_nov_95.155%0007587142050000000
SPN76Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-6];bacterium_MOT-171_nov_95.050%2544110005613400004240
SPN77Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] polysaccharolyticum_nov_87.308%871770000000000000
SPN78Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Olsenella;phocaeensis_nov_92.172%0000911430000026000
SPN79Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Roseburia;hominis_nov_92.471%000000991600000000
SPN8Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Roseburia;inulinivorans_nov_93.786%0160000000000000
SPN80Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Parabacteroides;distasonis_nov_97.514%000979564000000000
SPN81Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-182_nov_92.245%000000000081001730
SPN82Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Faecalicatena;orotica_nov_92.218%62109161020028000102017612415
SPN83Bacteria;Firmicutes;Clostridia;Clostridiales;Eubacteriaceae_[XV];Eubacterium;xylanophilum_nov_91.149%000000165810000000
SPN84Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] polysaccharolyticum_nov_93.050%00000023600000000
SPN85Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-1];bacterium_MOT-166_nov_95.661%000000961390000000
SPN86Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Longibaculum;muris_nov_93.910%0001504837000000000
SPN87Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Parabacteroides;distasonis_nov_97.323%0000000011418908700
SPN88Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-185_nov_92.105%8412313000000000000
SPN89Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-6];bacterium_MOT-171_nov_95.644%638069000000000000
SPN9Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_93.097%0160000000000000
SPN90Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Turicibacteraceae;Turicibacter;sanguinis_nov_95.817%121840000000000000
SPN91Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Bariatricus;massiliensis_nov_93.037%00045004549250003700
SPN92Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;collagenovorans_nov_80.952%000000821170000000
SPN93Bacteria;Firmicutes;Clostridia;Clostridiales;Eubacteriaceae_[XV];Eubacterium;ventriosum_nov_92.843%00000000000199000
SPN94Bacteria;Deferribacteres;Deferribacteres;Deferribacterales;Mucispirillaceae;Mucispirillum;schaedleri_nov_93.110%000000022126391200624060
SPN95Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Fusicatenibacter;saccharivorans_nov_91.018%53029000000000000
SPN96Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfovibrionaceae;Desulfovibrio;fairfieldensis_nov_89.168%00046243940490000000
SPN97Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-182_nov_89.784%556972000000000000
SPN98Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-3];bacterium_MOT-168_nov_94.059%0003500000003801210
SPN99Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Longibaculum;muris_nov_91.211%000000000000123067
SPPN1Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;multigenus;multispecies_sppn1_3_nov_94.186%082000000000000
SPPN4Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;multispecies_sppn4_2_nov_89.792%0000001291500000000
SPPN5Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfovibrionaceae;Desulfovibrio;multispecies_sppn5_2_nov_96.275%0000000028081020250
 
 
Download OTU Tables at Different Taxonomy Levels
PhylumCount*: Relative**: CLR***:
ClassCount*: Relative**: CLR***:
OrderCount*: Relative**: CLR***:
FamilyCount*: Relative**: CLR***:
GenusCount*: Relative**: CLR***:
SpeciesCount*: Relative**: CLR***:
* Read count
** Relative abundance (count/total sample count)
*** Centered log ratio transformed abundance
;
 
The species listed in the table has full taxonomy and a dynamically assigned species ID specific to this report. When some reads match with the reference sequences of more than one species equally (i.e., same percent identiy and alignmnet coverage), they can't be assigned to a particular species. Instead, they are assigned to multiple species with the species notaton "s__multispecies_spp2_2". In this notation, spp2 is the dynamic ID assigned to these reads that hit multiple sequences and the "_2" at the end of the notation means there are two species in the spp2.

You can look up which species are included in the multi-species assignment, in this table below:
 
 
 
 
Another type of notation is "s__multispecies_sppn2_2", in which the "n" in the sppn2 means it's a potential novel species because all the reads in this species have < 98% idenity to any of the reference sequences. They were grouped together based on de novo OTU clustering at 98% identity cutoff. And then a representative sequence was chosed to BLASTN search against the reference database to find the closest match (but will still be < 98%). This representative sequence also matched equally to more than one species, hence the "spp" was given in the label.
 
 

Taxonomy Bar Plots for All Samples

 
 

Taxonomy Bar Plots for Individual Comparison Groups

 
 
Comparison No.Comparison NameFamiliesGeneraSpecies
Comparison 1WT Normal vs WT HFD vs SAA KO Normal vs SAA KO HFD vs SAA KO BL HFDPDFSVGPDFSVGPDFSVG
Comparison 2WT Normal vs WT HFDPDFSVGPDFSVGPDFSVG
Comparison 3SAA KO Normal vs SAA KO HFDPDFSVGPDFSVGPDFSVG
Comparison 4SAA KO Normal vs SAA KO BL HFDPDFSVGPDFSVGPDFSVG
Comparison 5SAA KO HFD vs SAA KO BL HFDPDFSVGPDFSVGPDFSVG
 
 

VIII. Analysis - Alpha Diversity

 

In ecology, alpha diversity (α-diversity) is the mean species diversity in sites or habitats at a local scale. The term was introduced by R. H. Whittaker[1][2] together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites or habitats at a more local scale (alpha diversity) and the differentiation among those habitats (beta diversity).


References:
Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338. doi:10.2307/1943563
Whittaker, R. H. (1972). Evolution and Measurement of Species Diversity. Taxon, 21, 213-251. doi:10.2307/1218190

 

Alpha Diversity Analysis by Rarefaction

Diversity measures are affected by the sampling depth. Rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples. Rarefaction curves generally grow rapidly at first, as the most common species are found, but the curves plateau as only the rarest species remain to be sampled.


References:
Willis AD. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol. 2019 Oct 23;10:2407. doi: 10.3389/fmicb.2019.02407. PMID: 31708888; PMCID: PMC6819366.

 
 
 

Boxplot of Alpha-diversity Indices

The two main factors taken into account when measuring diversity are richness and evenness. Richness is a measure of the number of different kinds of organisms present in a particular area. Evenness compares the similarity of the population size of each of the species present. There are many different ways to measure the richness and evenness. These measurements are called "estimators" or "indices". Below is a diversity of 3 commonly used indices showing the values for all the samples (dots) and in groups (boxes).

 
Alpha Diversity Box Plots for All Groups
 
 
 
 
 
 
 
Alpha Diversity Box Plots for Individual Comparisons
 
Comparison 1WT Normal vs WT HFD vs SAA KO Normal vs SAA KO HFD vs SAA KO BL HFDView in PDFView in SVG
Comparison 2WT Normal vs WT HFDView in PDFView in SVG
Comparison 3SAA KO Normal vs SAA KO HFDView in PDFView in SVG
Comparison 4SAA KO Normal vs SAA KO BL HFDView in PDFView in SVG
Comparison 5SAA KO HFD vs SAA KO BL HFDView in PDFView in SVG
 
 
 

Group Significance of Alpha-diversity Indices

To test whether the alpha diversity among different comparison groups are different statistically, we use the Kruskal Wallis H test provided the "alpha-group-significance" fucntion in the QIIME 2 "diversity" package. Kruskal Wallis H test is the non-parametric alternative to the One Way ANOVA. Non-parametric means that the test doesn’t assume your data comes from a particular distribution. The H test is used when the assumptions for ANOVA aren’t met (like the assumption of normality). It is sometimes called the one-way ANOVA on ranks, as the ranks of the data values are used in the test rather than the actual data points. The H test determines whether the medians of two or more groups are different.

Below are the Kruskal Wallis H test results for each comparison based on three different alpha diversity measures: 1) Observed species (features), 2) Shannon index, and 3) Simpson index.

 
 
Comparison 1.WT Normal vs WT HFD vs SAA KO Normal vs SAA KO HFD vs SAA KO BL HFDObserved FeaturesShannon IndexSimpson Index
Comparison 2.WT Normal vs WT HFDObserved FeaturesShannon IndexSimpson Index
Comparison 3.SAA KO Normal vs SAA KO HFDObserved FeaturesShannon IndexSimpson Index
Comparison 4.SAA KO Normal vs SAA KO BL HFDObserved FeaturesShannon IndexSimpson Index
Comparison 5.SAA KO HFD vs SAA KO BL HFDObserved FeaturesShannon IndexSimpson Index
 
 

IX. Analysis - Beta Diversity

 

NMDS and PCoA Plots

Beta diversity compares the similarity (or dissimilarity) of microbial profiles between different groups of samples. There are many different similarity/dissimilarity metrics. In general, they can be quantitative (using sequence abundance, e.g., Bray-Curtis or weighted UniFrac) or binary (considering only presence-absence of sequences, e.g., binary Jaccard or unweighted UniFrac). They can be even based on phylogeny (e.g., UniFrac metrics) or not (non-UniFrac metrics, such as Bray-Curtis, etc.).

For microbiome studies, species profiles of samples can be compared with the Bray-Curtis dissimilarity, which is based on the count data type. The pair-wise Bray-Curtis dissimilarity matrix of all samples can then be subject to either multi-dimensional scaling (MDS, also known as PCoA) or non-metric MDS (NMDS).

MDS/PCoA is a scaling or ordination method that starts with a matrix of similarities or dissimilarities between a set of samples and aims to produce a low-dimensional graphical plot of the data in such a way that distances between points in the plot are close to original dissimilarities.

NMDS is similar to MDS, however it does not use the dissimilarities data, instead it converts them into the ranks and use these ranks in the calculation.

In our beta diversity analysis, Bray-Curtis dissimilarity matrix was first calculated and then plotted by the PCoA and NMDS separately. Below are beta diveristy results for all groups together:

 
 
NMDS and PCoA Plots for All Groups
 
 
 
 
 

The above PCoA and NMDS plots are based on count data. The count data can also be transformed into centered log ratio (CLR) for each species. The CLR data is no longer count data and cannot be used in Bray-Curtis dissimilarity calculation. Instead CLR can be compared with Euclidean distances. When CLR data are compared by Euclidean distance, the distance is also called Aitchison distance.

Below are the NMDS and PCoA plots of the Aitchison distances of the samples:

 
 
 
 
 
 
 
NMDS and PCoA Plots for Individual Comparisons
 
 
Comparison No.Comparison NameNMDAPCoA
Bray-CurtisCLR EuclideanBray-CurtisCLR Euclidean
Comparison 1WT Normal vs WT HFD vs SAA KO Normal vs SAA KO HFD vs SAA KO BL HFDPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 2WT Normal vs WT HFDPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 3SAA KO Normal vs SAA KO HFDPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 4SAA KO Normal vs SAA KO BL HFDPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 5SAA KO HFD vs SAA KO BL HFDPDFSVGPDFSVGPDFSVGPDFSVG
 
 
 
 
 

Interactive 3D PCoA Plots - Bray-Curtis Dissimilarity

 
 
 

Interactive 3D PCoA Plots - Euclidean Distance

 
 
 

Interactive 3D PCoA Plots - Correlation Coefficients

 
 
 

Group Significance of Beta-diversity Indices

To test whether the between-group dissimilarities are significantly greater than the within-group dissimilarities, the "beta-group-significance" function provided in the QIIME 2 "diversity" package was used with PERMANOVA (permutational multivariate analysis of variance) as the group significant testing method.

Three beta diversity matrics were used: 1) Bray–Curtis dissimilarity 2) Correlation coefficient matrix , and 3) Aitchison distance (Euclidean distance between clr-transformed compositions).

 
 
Comparison 1.WT Normal vs WT HFD vs SAA KO Normal vs SAA KO HFD vs SAA KO BL HFDBray–CurtisCorrelationAitchison
Comparison 2.WT Normal vs WT HFDBray–CurtisCorrelationAitchison
Comparison 3.SAA KO Normal vs SAA KO HFDBray–CurtisCorrelationAitchison
Comparison 4.SAA KO Normal vs SAA KO BL HFDBray–CurtisCorrelationAitchison
Comparison 5.SAA KO HFD vs SAA KO BL HFDBray–CurtisCorrelationAitchison
 
 
 

X. Analysis - Differential Abundance

16S rRNA next generation sequencing (NGS) generates a fixed number of reads that reflect the proportion of different species in a sample, i.e., the relative abundance of species, instead of the absolute abundance. In Mathematics, measurements involving probabilities, proportions, percentages, and ppm can all be thought of as compositional data. This makes the microbiome read count data “compositional” (Gloor et al, 2017). In general, compositional data represent parts of a whole which only carry relative information (http://www.compositionaldata.com/).

The problem of microbiome data being compositional arises when comparing two groups of samples for identifying “differentially abundant” species. A species with the same absolute abundance between two conditions, its relative abundances in the two conditions (e.g., percent abundance) can become different if the relative abundance of other species change greatly. This problem can lead to incorrect conclusion in terms of differential abundance for microbial species in the samples.

When studying differential abundance (DA), the current better approach is to transform the read count data into log ratio data. The ratios are calculated between read counts of all species in a sample to a “reference” count (e.g., mean read count of the sample). The log ratio data allow the detection of DA species without being affected by percentage bias mentioned above

In this report, a compositional DA analysis tool “ANCOM” (analysis of composition of microbiomes) was used. ANCOM transforms the count data into log-ratios and thus is more suitable for comparing the composition of microbiomes in two or more populations. "ANCOM" generates a table of features with W-statistics and whether the null hypothesis is rejected. The “W” is the W-statistic, or number of features that a single feature is tested to be significantly different against. Hence the higher the "W" the more statistical sifgnificant that a feature/species is differentially abundant.


References:

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017 Nov 15;8:2224. doi: 10.3389/fmicb.2017.02224. PMID: 29187837; PMCID: PMC5695134.

Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015 May 29;26:27663. doi: 10.3402/mehd.v26.27663. PMID: 26028277; PMCID: PMC4450248.

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 

ANCOM Differential Abundance Analysis

 
ANCOM Results for Individual Comparisons
Comparison No.Comparison Name
Comparison 1.WT Normal vs WT HFD vs SAA KO Normal vs SAA KO HFD vs SAA KO BL HFD
Comparison 2.WT Normal vs WT HFD
Comparison 3.SAA KO Normal vs SAA KO HFD
Comparison 4.SAA KO Normal vs SAA KO BL HFD
Comparison 5.SAA KO HFD vs SAA KO BL HFD
 
 

ANCOM-BC2 Differential Abundance Analysis

 

Starting with version V1.2, we include the results of ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) (Lin and Peddada 2020). ANCOM-BC is an updated version of "ANCOM" that:
(a) provides statistically valid test with appropriate p-values,
(b) provides confidence intervals for differential abundance of each taxon,
(c) controls the False Discovery Rate (FDR),
(d) maintains adequate power, and
(e) is computationally simple to implement.

The bias correction (BC) addresses a challenging problem of the bias introduced by differences in the sampling fractions across samples. This bias has been a major hurdle in performing DA analysis of microbiome data. ANCOM-BC estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework.

Starting with version V1.43, ANCOM-BC2 is used instead of ANCOM-BC, So that multiple pairwise directional test can be performed (if there are more than two gorups in a comparison). When performning pairwise directional test, the mixed directional false discover rate (mdFDR) is taken into account. The mdFDR is the combination of false discovery rate due to multiple testing, multiple pairwise comparisons, and directional tests within each pairwise comparison. The mdFDR is adopted from (Guo, Sarkar, and Peddada 2010; Grandhi, Guo, and Peddada 2016). For more detail explanation and additional features of ANCOM-BC2 please see author's documentation.

References:

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

Guo W, Sarkar SK, Peddada SD. Controlling false discoveries in multidimensional directional decisions, with applications to gene expression data on ordered categories. Biometrics. 2010 Jun;66(2):485-92. doi: 10.1111/j.1541-0420.2009.01292.x. Epub 2009 Jul 23. PMID: 19645703; PMCID: PMC2895927.

Grandhi A, Guo W, Peddada SD. A multiple testing procedure for multi-dimensional pairwise comparisons with application to gene expression studies. BMC Bioinformatics. 2016 Feb 25;17:104. doi: 10.1186/s12859-016-0937-5. PMID: 26917217; PMCID: PMC4768411.

 
 
ANCOM-BC Results for Individual Comparisons
 
Comparison No.Comparison Name
Comparison 1.WT Normal vs WT HFD vs SAA KO Normal vs SAA KO HFD vs SAA KO BL HFD
Comparison 2.WT Normal vs WT HFD
Comparison 3.SAA KO Normal vs SAA KO HFD
Comparison 4.SAA KO Normal vs SAA KO BL HFD
Comparison 5.SAA KO HFD vs SAA KO BL HFD
 
 
 

LEfSe - Linear Discriminant Analysis Effect Size

LEfSe (Linear Discriminant Analysis Effect Size) is an alternative method to find "organisms, genes, or pathways that consistently explain the differences between two or more microbial communities" (Segata et al., 2011). Specifically, LEfSe uses rank-based Kruskal-Wallis (KW) sum-rank test to detect features with significant differential (relative) abundance with respect to the class of interest. Since it is rank-based, instead of proportional based, the differential species identified among the comparison groups is less biased (than percent abundance based).

Reference:

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011 Jun 24;12(6):R60. doi: 10.1186/gb-2011-12-6-r60. PMID: 21702898; PMCID: PMC3218848.

 
WT Normal vs WT HFD vs SAA KO Normal vs SAA KO HFD vs SAA KO BL HFD
 
 
 
 
 
 
 
LEfSe Results for All Comparisons
 
Comparison No.Comparison Name
Comparison 1.WT Normal vs WT HFD vs SAA KO Normal vs SAA KO HFD vs SAA KO BL HFD
Comparison 2.WT Normal vs WT HFD
Comparison 3.SAA KO Normal vs SAA KO HFD
Comparison 4.SAA KO Normal vs SAA KO BL HFD
Comparison 5.SAA KO HFD vs SAA KO BL HFD
 
 

XI. Analysis - Heatmap Profile

 

Species vs Sample Abundance Heatmap for All Samples

 
 
 

Heatmaps for Individual Comparisons

 
A) Two-way clustering - clustered on both columns (Samples) and rows (organism)
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1WT Normal vs WT HFD vs SAA KO Normal vs SAA KO HFD vs SAA KO BL HFDPDFSVGPDFSVGPDFSVG
Comparison 2WT Normal vs WT HFDPDFSVGPDFSVGPDFSVG
Comparison 3SAA KO Normal vs SAA KO HFDPDFSVGPDFSVGPDFSVG
Comparison 4SAA KO Normal vs SAA KO BL HFDPDFSVGPDFSVGPDFSVG
Comparison 5SAA KO HFD vs SAA KO BL HFDPDFSVGPDFSVGPDFSVG
 
 
B) One-way clustering - clustered on rows (organism) only
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1WT Normal vs WT HFD vs SAA KO Normal vs SAA KO HFD vs SAA KO BL HFDPDFSVGPDFSVGPDFSVG
Comparison 2WT Normal vs WT HFDPDFSVGPDFSVGPDFSVG
Comparison 3SAA KO Normal vs SAA KO HFDPDFSVGPDFSVGPDFSVG
Comparison 4SAA KO Normal vs SAA KO BL HFDPDFSVGPDFSVGPDFSVG
Comparison 5SAA KO HFD vs SAA KO BL HFDPDFSVGPDFSVGPDFSVG
 
 
C) No clustering
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1WT Normal vs WT HFD vs SAA KO Normal vs SAA KO HFD vs SAA KO BL HFDPDFSVGPDFSVGPDFSVG
Comparison 2WT Normal vs WT HFDPDFSVGPDFSVGPDFSVG
Comparison 3SAA KO Normal vs SAA KO HFDPDFSVGPDFSVGPDFSVG
Comparison 4SAA KO Normal vs SAA KO BL HFDPDFSVGPDFSVGPDFSVG
Comparison 5SAA KO HFD vs SAA KO BL HFDPDFSVGPDFSVGPDFSVG
 
 

XII. Analysis - Network Association

To analyze the co-occurrence or co-exclusion between microbial species among different samples, network correlation analysis tools are usually used for this purpose. However, microbiome count data are compositional. If count data are normalized to the total number of counts in the sample, the data become not independent and traditional statistical metrics (e.g., correlation) for the detection of specie-species relationships can lead to spurious results. In addition, sequencing-based studies typically measure hundreds of OTUs (species) on few samples; thus, inference of OTU-OTU association networks is severely under-powered. Here we use SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues (Kurtz et al., 2015). SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. SPIEC-EASI provides two algorithms for network inferencing – 1) Meinshausen-Bühlmann's neighborhood selection (MB method) and inverse covariance selection (GLASSO method, i.e., graphical least absolute shrinkage and selection operator). This is fundamentally distinct from SparCC, which essentially estimate pairwise correlations. In addition to these two methods, we provide the results of a third method - SparCC (Sparse Correlations for Compositional Data)(Friedman & Alm 2012), which is also a method for inferring correlations from compositional data. SparCC estimates the linear Pearson correlations between the log-transformed components.


References:

Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015 May 7;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226. PMID: 25950956; PMCID: PMC4423992.

Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20. PMID: 23028285; PMCID: PMC3447976.

 

SPIEC-EASI Network Inference by Neighborhood Selection (MB Method)

 

 

 

Association Network Inference by SparCC

 

 

 
 

XIII. Disclaimer

The results of this analysis are for research purpose only. They are not intended to diagnose, treat, cure, or prevent any disease. Forsyth and FOMC are not responsible for use of information provided in this report outside the research area.

 

Copyright FOMC 2023