FOMC Service Report

16S rRNA Gene V1V3 Amplicon Sequencing

Version V1.43

Version History

The Forsyth Institute, Cambridge, MA, USA
December 30, 2023

Project ID: FOMC15127


I. Project Summary

Project FOMC15127 services include NGS sequencing of the V1V3 region of the 16S rRNA gene amplicons from the samples. First and foremost, please download this report, as well as the sequence raw data from the download links provided below. These links will expire after 60 days. We cannot guarantee the availability of your data after 60 days.

Full Bioinformatics analysis service was requested. We provide many analyses, starting from the raw sequence quality and noise filtering, pair reads merging, as well as chimera filtering for the sequences, using the DADA2 denosing algorithm and pipeline.

We also provide many downstream analyses such as taxonomy assignment, alpha and beta diversity analyses, and differential abundance analysis.

For taxonomy assignment, most informative would be the taxonomy barplots. We provide an interactive barplots to show the relative abundance of microbes at different taxonomy levels (from Phylum to species) that you can choose.

If you specify which groups of samples you want to compare for differential abundance, we provide both ANCOM and LEfSe differential abundance analysis.

 

II. Workflow Checklist

1.Sample Received
2.Sample Quality Evaluated
3.Sample Prepared for Sequencing
4.Next-Gen Sequencing
5.Sequence Quality Check
6.Absolute Abundance
7.Report and Raw Sequence Data Available for Download
8.Bioinformatics Analysis - Reads Processing (DADA2 Quality Trimming, Denoising, Paired Reads Merging)
9.Bioinformatics Analysis - Reads Taxonomy Assignment
10.Bioinformatics Analysis - Alpha Diversity Analysis
11.Bioinformatics Analysis - Beta Diversity Analysis
12.Bioinformatics Analysis - Differential Abundance Analysis
13.Bioinformatics Analysis - Heatmap Profile
14.Bioinformatics Analysis - Network Association
 

III. NGS Sequencing

The samples were processed and analyzed with the ZymoBIOMICS® Service: Targeted Metagenomic Sequencing (Zymo Research, Irvine, CA).

DNA Extraction: If DNA extraction was performed, one of three different DNA extraction kits was used depending on the sample type and sample volume and were used according to the manufacturer’s instructions, unless otherwise stated. The kit used in this project is marked below:

ZymoBIOMICS® DNA Miniprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS® DNA Microprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS®-96 MagBead DNA Kit (Zymo Research, Irvine, CA)
N/A (DNA Extraction Not Performed)
Elution Volume: 50µL
Additional Notes: NA

Targeted Library Preparation: The DNA samples were prepared for targeted sequencing with the Quick-16S™ NGS Library Prep Kit (Zymo Research, Irvine, CA). These primers were custom designed by Zymo Research to provide the best coverage of the 16S gene while maintaining high sensitivity. The primer sets used in this project are marked below:

Quick-16S™ Primer Set V1-V2 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V1-V3 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V3-V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V6-V8 (Zymo Research, Irvine, CA)
Other: NA
Additional Notes: NA

The sequencing library was prepared using an innovative library preparation process in which PCR reactions were performed in real-time PCR machines to control cycles and therefore limit PCR chimera formation. The final PCR products were quantified with qPCR fluorescence readings and pooled together based on equal molarity. The final pooled library was cleaned up with the Select-a-Size DNA Clean & Concentrator™ (Zymo Research, Irvine, CA), then quantified with TapeStation® (Agilent Technologies, Santa Clara, CA) and Qubit® (Thermo Fisher Scientific, Waltham, WA).

Control Samples: The ZymoBIOMICS® Microbial Community Standard (Zymo Research, Irvine, CA) was used as a positive control for each DNA extraction, if performed. The ZymoBIOMICS® Microbial Community DNA Standard (Zymo Research, Irvine, CA) was used as a positive control for each targeted library preparation. Negative controls (i.e. blank extraction control, blank library preparation control) were included to assess the level of bioburden carried by the wet-lab process.

Sequencing: The final library was sequenced on Illumina® MiSeq™ with a V3 reagent kit (600 cycles). The sequencing was performed with 10% PhiX spike-in.

Absolute Abundance Quantification*: A quantitative real-time PCR was set up with a standard curve. The standard curve was made with plasmid DNA containing one copy of the 16S gene and one copy of the fungal ITS2 region prepared in 10-fold serial dilutions. The primers used were the same as those used in Targeted Library Preparation. The equation generated by the plasmid DNA standard curve was used to calculate the number of gene copies in the reaction for each sample. The PCR input volume (2 µl) was used to calculate the number of gene copies per microliter in each DNA sample.
The number of genome copies per microliter DNA sample was calculated by dividing the gene copy number by an assumed number of gene copies per genome. The value used for 16S copies per genome is 4. The value used for ITS copies per genome is 200. The amount of DNA per microliter DNA sample was calculated using an assumed genome size of 4.64 x 106 bp, the genome size of Escherichia coli, for 16S samples, or an assumed genome size of 1.20 x 107 bp, the genome size of Saccharomyces cerevisiae, for ITS samples. This calculation is shown below:

Calculated Total DNA = Calculated Total Genome Copies × Assumed Genome Size (4.64 × 106 bp) ×
Average Molecular Weight of a DNA bp (660 g/mole/bp) ÷ Avogadro’s Number (6.022 x 1023/mole)


* Absolute Abundance Quantification is only available for 16S and ITS analyses.

The absolute abundance standard curve data can be viewed in Excel here:

The absolute abundance standard curve is shown below:

Absolute Abundance Standard Curve

 

IV. Complete Report Download

The complete report of your project, including all links in this report, can be downloaded by clicking the link provided below. The downloaded file is a compressed ZIP file and once unzipped, open the file “REPORT.html” (may only shown as "REPORT" in your computer) by double clicking it. Your default web browser will open it and you will see the exact content of this report.

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Complete report download link:

To view the report, please follow the following steps:
1.Download the .zip file from the report link above.
2.Extract all the contents of the downloaded .zip file to your desktop.
3.Open the extracted folder and find the "REPORT.html" (may shown as only "REPORT").
4.Open (double-clicking) the REPORT.html file. Your default browser will open the top age of the complete report. Within the report, there are links to view all the analyses performed for the project.

 

V. Raw Sequence Data Download

The raw NGS sequence data is available for download with the link provided below. The data is a compressed ZIP file and can be unzipped to individual sequence files. Since this is a pair-end sequencing, each of your samples is represented by two sequence files, one for READ 1, with the file extension “*_R1.fastq.gz”, another READ 2, with the file extension “*_R1.fastq.gz”. The files are in FASTQ format and are compressed. FASTQ format is a text-based data format for storing both a biological sequence and its corresponding quality scores. Most sequence analysis software will be able to open them. The Sample IDs associated with the R1 and R2 fastq files are listed in the table below:

Sample IDOriginal Sample IDRead 1 File NameRead 2 File Name
F15127.S10original sample ID herezr15127_10V1V3_R1.fastq.gzzr15127_10V1V3_R2.fastq.gz
F15127.S11original sample ID herezr15127_11V1V3_R1.fastq.gzzr15127_11V1V3_R2.fastq.gz
F15127.S12original sample ID herezr15127_12V1V3_R1.fastq.gzzr15127_12V1V3_R2.fastq.gz
F15127.S13original sample ID herezr15127_13V1V3_R1.fastq.gzzr15127_13V1V3_R2.fastq.gz
F15127.S14original sample ID herezr15127_14V1V3_R1.fastq.gzzr15127_14V1V3_R2.fastq.gz
F15127.S15original sample ID herezr15127_15V1V3_R1.fastq.gzzr15127_15V1V3_R2.fastq.gz
F15127.S16original sample ID herezr15127_16V1V3_R1.fastq.gzzr15127_16V1V3_R2.fastq.gz
F15127.S17original sample ID herezr15127_17V1V3_R1.fastq.gzzr15127_17V1V3_R2.fastq.gz
F15127.S18original sample ID herezr15127_18V1V3_R1.fastq.gzzr15127_18V1V3_R2.fastq.gz
F15127.S19original sample ID herezr15127_19V1V3_R1.fastq.gzzr15127_19V1V3_R2.fastq.gz
F15127.S01original sample ID herezr15127_1V1V3_R1.fastq.gzzr15127_1V1V3_R2.fastq.gz
F15127.S20original sample ID herezr15127_20V1V3_R1.fastq.gzzr15127_20V1V3_R2.fastq.gz
F15127.S21original sample ID herezr15127_21V1V3_R1.fastq.gzzr15127_21V1V3_R2.fastq.gz
F15127.S22original sample ID herezr15127_22V1V3_R1.fastq.gzzr15127_22V1V3_R2.fastq.gz
F15127.S23original sample ID herezr15127_23V1V3_R1.fastq.gzzr15127_23V1V3_R2.fastq.gz
F15127.S24original sample ID herezr15127_24V1V3_R1.fastq.gzzr15127_24V1V3_R2.fastq.gz
F15127.S25original sample ID herezr15127_25V1V3_R1.fastq.gzzr15127_25V1V3_R2.fastq.gz
F15127.S26original sample ID herezr15127_26V1V3_R1.fastq.gzzr15127_26V1V3_R2.fastq.gz
F15127.S27original sample ID herezr15127_27V1V3_R1.fastq.gzzr15127_27V1V3_R2.fastq.gz
F15127.S28original sample ID herezr15127_28V1V3_R1.fastq.gzzr15127_28V1V3_R2.fastq.gz
F15127.S29original sample ID herezr15127_29V1V3_R1.fastq.gzzr15127_29V1V3_R2.fastq.gz
F15127.S02original sample ID herezr15127_2V1V3_R1.fastq.gzzr15127_2V1V3_R2.fastq.gz
F15127.S30original sample ID herezr15127_30V1V3_R1.fastq.gzzr15127_30V1V3_R2.fastq.gz
F15127.S03original sample ID herezr15127_3V1V3_R1.fastq.gzzr15127_3V1V3_R2.fastq.gz
F15127.S04original sample ID herezr15127_4V1V3_R1.fastq.gzzr15127_4V1V3_R2.fastq.gz
F15127.S05original sample ID herezr15127_5V1V3_R1.fastq.gzzr15127_5V1V3_R2.fastq.gz
F15127.S06original sample ID herezr15127_6V1V3_R1.fastq.gzzr15127_6V1V3_R2.fastq.gz
F15127.S07original sample ID herezr15127_7V1V3_R1.fastq.gzzr15127_7V1V3_R2.fastq.gz
F15127.S08original sample ID herezr15127_8V1V3_R1.fastq.gzzr15127_8V1V3_R2.fastq.gz
F15127.S09original sample ID herezr15127_9V1V3_R1.fastq.gzzr15127_9V1V3_R2.fastq.gz

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Raw sequence data download link:

 

VI. Analysis - DADA2 Read Processing

What is DADA2?

DADA2 is a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. DADA2 identified more real variants and output fewer spurious sequences than other methods.

DADA2’s advantage is that it uses more of the data. The DADA2 error model incorporates quality information, which is ignored by all other methods after filtering. The DADA2 error model incorporates quantitative abundances, whereas most other methods use abundance ranks if they use abundance at all. The DADA2 error model identifies the differences between sequences, eg. A->C, whereas other methods merely count the mismatches. DADA2 can parameterize its error model from the data itself, rather than relying on previous datasets that may or may not reflect the PCR and sequencing protocols used in your study.

DADA2 Publication: Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016 Jul;13(7):581-3. doi: 10.1038/nmeth.3869. Epub 2016 May 23. PMID: 27214047; PMCID: PMC4927377.

DADA2 Software Package is available as an R package at : https://benjjneb.github.io/dada2/index.html

Analysis Procedures:

DADA2 pipeline includes several tools for read quality control, including quality filtering, trimming, denoising, pair merging and chimera filtering. Below are the major processing steps of DADA2:

Step 1. Read trimming based on sequence quality The quality of NGS Illumina sequences often decreases toward the end of the reads. DADA2 allows to trim off the poor quality read ends in order to improve the error model building and pair mergicing performance.

Step 2. Learn the Error Rates The DADA2 algorithm makes use of a parametric error model (err) and every amplicon dataset has a different set of error rates. The learnErrors method learns this error model from the data, by alternating estimation of the error rates and inference of sample composition until they converge on a jointly consistent solution. As in many machine-learning problems, the algorithm must begin with an initial guess, for which the maximum possible error rates in this data are used (the error rates if only the most abundant sequence is correct and all the rest are errors).

Step 3. Infer amplicon sequence variants (ASVs) based on the error model built in previous step. This step is also called sequence "denoising". The outcome of this step is a list of ASVs that are the equivalent of oligonucleotides.

Step 4. Merge paired reads. If the sequencing products are read pairs, DADA2 will merge the R1 and R2 ASVs into single sequences. Merging is performed by aligning the denoised forward reads with the reverse-complement of the corresponding denoised reverse reads, and then constructing the merged “contig” sequences. By default, merged sequences are only output if the forward and reverse reads overlap by at least 12 bases, and are identical to each other in the overlap region (but these conditions can be changed via function arguments).

Step 5. Remove chimera. The core dada method corrects substitution and indel errors, but chimeras remain. Fortunately, the accuracy of sequence variants after denoising makes identifying chimeric ASVs simpler than when dealing with fuzzy OTUs. Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a right-segment from two more abundant “parent” sequences. The frequency of chimeric sequences varies substantially from dataset to dataset, and depends on on factors including experimental procedures and sample complexity.

Results

1. Read Quality Plots NGS sequence analaysis starts with visualizing the quality of the sequencing. Below are the quality plots of the first sample for the R1 and R2 reads separately. In gray-scale is a heat map of the frequency of each quality score at each base position. The mean quality score at each position is shown by the green line, and the quartiles of the quality score distribution by the orange lines. The forward reads are usually of better quality. It is a common practice to trim the last few nucleotides to avoid less well-controlled errors that can arise there. The trimming affects the downstream steps including error model building, merging and chimera calling. FOMC uses an empirical approach to test many combinations of different trim length in order to achieve best final amplicon sequence variants (ASVs), see the next section “Optimal trim length for ASVs”.

Quality plots for all samples:

2. Optimal trim length for ASVs The final number of merged and chimera-filtered ASVs depends on the quality filtering (hence trimming) in the very beginning of the DADA2 pipeline. In order to achieve highest number of ASVs, an empirical approach was used -

  1. Create a random subset of each sample consisting of 5,000 R1 and 5,000 R2 (to reduce computation time)
  2. Trim 10 bases at a time from the ends of both R1 and R2 up to 50 bases
  3. For each combination of trimmed length (e.g., 300x300, 300x290, 290x290 etc), the trimmed reads are subject to the entire DADA2 pipeline for chimera-filtered merged ASVs
  4. The combination with highest percentage of the input reads becoming final ASVs is selected for the complete set of data

Below is the result of such operation, showing ASV percentages of total reads for all trimming combinations (1st Column = R1 lengths in bases; 1st Row = R2 lengths in bases):

R1/R2281271261251241231
32170.08%70.62%71.09%71.27%71.12%64.81%
31170.22%70.81%71.23%71.10%64.90%58.11%
30170.11%70.79%70.88%64.65%57.92%28.88%
29170.11%70.53%64.57%57.93%28.80%26.88%
28166.75%61.08%54.66%25.81%23.91%22.83%
27159.87%53.70%25.09%23.22%22.20%19.91%

Based on the above result, the trim length combination of R1 = 321 bases and R2 = 251 bases (highlighted red above), was chosen for generating final ASVs for all sequences. This combination generated highest number of merged non-chimeric ASVs and was used for downstream analyses, if requested.

3. Error plots from learning the error rates After DADA2 building the error model for the set of data, it is always worthwhile, as a sanity check if nothing else, to visualize the estimated error rates. The error rates for each possible transition (A→C, A→G, …) are shown below. Points are the observed error rates for each consensus quality score. The black line shows the estimated error rates after convergence of the machine-learning algorithm. The red line shows the error rates expected under the nominal definition of the Q-score. The ideal result would be the estimated error rates (black line) are a good fit to the observed rates (points), and the error rates drop with increased quality as expected.

Forward Read R1 Error Plot


Reverse Read R2 Error Plot

The PDF version of these plots are available here:

 

4. DADA2 Result Summary The table below shows the summary of the DADA2 analysis, tracking paired read counts of each samples for all the steps during DADA2 denoising process - including end-trimming (filtered), denoising (denoisedF, denoisedF), pair merging (merged) and chimera removal (nonchim).

Sample IDF15127.S01F15127.S02F15127.S03F15127.S04F15127.S05F15127.S06F15127.S07F15127.S08F15127.S09F15127.S10F15127.S11F15127.S12F15127.S13F15127.S14F15127.S15F15127.S16F15127.S17F15127.S18F15127.S19F15127.S20F15127.S21F15127.S22F15127.S23F15127.S24F15127.S25F15127.S26F15127.S27F15127.S28F15127.S29F15127.S30Row SumPercentage
input85,44063,85688,22871,49759,39277,19868,710106,360131,56896,538116,86161,500107,682136,411161,76761,451108,06586,76558,56157,58255,94465,17070,31250,85153,12028,42978,82858,00465,92363,3582,395,371100.00%
filtered72,70854,02374,94360,63950,47565,52357,73289,620110,85381,20898,21552,04090,641114,889135,99051,09691,04272,98349,63948,94847,50455,11459,94843,08145,22224,12367,19949,33356,10553,6842,024,52084.52%
denoisedF72,38853,78173,97760,47250,26564,91155,85087,349107,39579,43093,37051,04388,183111,578132,82949,53287,69170,52549,15248,61347,12754,83059,41842,67644,72723,74566,49548,88955,65452,9431,984,83882.86%
denoisedR71,58953,23073,65159,75749,61864,54855,90387,173108,10178,96694,43350,49688,032112,129132,47049,21188,57470,95048,58447,78646,40854,06758,84242,05244,05823,52765,40148,23454,72052,4861,974,99682.45%
merged69,86151,64171,27658,81048,77363,00953,73684,377103,79676,81189,05249,19185,296108,357128,12847,21984,77668,32246,03745,65244,27952,54755,53039,99440,16221,32161,09346,12952,39448,4351,896,00479.15%
nonchim63,51746,07063,03251,71946,14658,84453,46062,710103,71553,59179,75337,46375,582105,210102,62547,03968,25262,97342,55042,50441,76650,12552,61436,34736,94319,85857,57642,80646,87342,9051,694,56870.74%

This table can be downloaded as an Excel table below:

 

5. DADA2 Amplicon Sequence Variants (ASVs). A total of 2780 unique merged and chimera-free ASV sequences were identified, and their corresponding read counts for each sample are available in the "ASV Read Count Table" with rows for the ASV sequences and columns for sample. This read count table can be used for microbial profile comparison among different samples and the sequences provided in the table can be used to taxonomy assignment.

 

The table can be downloaded from this link:

 
 

Sample Meta Information

Download Sample Meta Information
#SampleIDSampleNameGroupSourceGenderStatusGroup1
F15127.S01B1.2LLigature Female PerioLigatureFemalePerioLigature Female Perio
F15127.S02B1.3LLigature Female PerioLigatureFemalePerioLigature Female Perio
F15127.S03B2.2LLigature Female PerioLigatureFemalePerioLigature Female Perio
F15127.S04D1.1LLigature Male PerioLigatureMalePerioLigature Male Perio
F15127.S05D3.2LLigature Male PerioLigatureMalePerioLigature Male Perio
F15127.S06D4.1LLigature Male PerioLigatureMalePerioLigature Male Perio
F15127.S07B1.1BBrain Female PerioBrainFemalePerioBrain Perio
F15127.S08B1.2BBrain Female PerioBrainFemalePerioBrain Perio
F15127.S09B2.4BBrain Female PerioBrainFemalePerioBrain Perio
F15127.S10D1.1BBrain Male PerioBrainMalePerioBrain Perio
F15127.S11D2.1BBrain Male PerioBrainMalePerioBrain Perio
F15127.S12D3.2BBrain Male PerioBrainMalePerioBrain Perio
F15127.S13A1.3BBrain Female Non-perioBrainFemaleNon-perioBrain Non-perio
F15127.S14A1.4BBrain Female Non-perioBrainFemaleNon-perioBrain Non-perio
F15127.S15A2.1BBrain Female Non-perioBrainFemaleNon-perioBrain Non-perio
F15127.S16C1.1BBrain Male Non-perioBrainMaleNon-perioBrain Non-perio
F15127.S17C1.2BBrain Male Non-perioBrainMaleNon-perioBrain Non-perio
F15127.S18C3.1BBrain Male Non-perioBrainMaleNon-perioBrain Non-perio
F15127.S19B1.2SStool Female PerioStoolFemalePerioStool Perio
F15127.S20B1.3SStool Female PerioStoolFemalePerioStool Perio
F15127.S21B2.4SStool Female PerioStoolFemalePerioStool Perio
F15127.S22D1.2SStool Male PerioStoolMalePerioStool Perio
F15127.S23D3.2SStool Male PerioStoolMalePerioStool Perio
F15127.S24D4.1SStool Male PerioStoolMalePerioStool Perio
F15127.S25A1.1SStool Female Non-perioStoolFemaleNon-perioStool Non-perio
F15127.S26A1.2SStool Female Non-perioStoolFemaleNon-perioStool Non-perio
F15127.S27A2.4SStool Female Non-perioStoolFemaleNon-perioStool Non-perio
F15127.S28C1.2SStool Male Non-perioStoolMaleNon-perioStool Non-perio
F15127.S29C3.2SStool Male Non-perioStoolMaleNon-perioStool Non-perio
F15127.S30C4.3SStool Male Non-perioStoolMaleNon-perioStool Non-perio
 
 

ASV Read Counts by Samples

#Sample IDRead Count
F15127.S2619,858
F15127.S2436,347
F15127.S2536,943
F15127.S1237,463
F15127.S2141,766
F15127.S2042,504
F15127.S1942,550
F15127.S2842,806
F15127.S3042,905
F15127.S0246,070
F15127.S0546,146
F15127.S2946,873
F15127.S1647,039
F15127.S2250,125
F15127.S0451,719
F15127.S2352,614
F15127.S0753,460
F15127.S1053,591
F15127.S2757,576
F15127.S0658,844
F15127.S0862,710
F15127.S1862,973
F15127.S0363,032
F15127.S0163,517
F15127.S1768,252
F15127.S1375,582
F15127.S1179,753
F15127.S15102,625
F15127.S09103,715
F15127.S14105,210
 
 
 

VII. Analysis - Read Taxonomy Assignment

Read Taxonomy Assignment - Methods

 

The species-level, open-reference 16S rRNA NGS reads taxonomy assignment pipeline

Version 20210310
 

1. Raw sequences reads in FASTA format were BLASTN-searched against a combined set of 16S rRNA reference sequences. It consists of MOMD (version 0.1), the HOMD (version 15.2 http://www.homd.org/index.php?name=seqDownload&file&type=R ), HOMD 16S rRNA RefSeq Extended Version 1.1 (EXT), GreenGene Gold (GG) (http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/gold_strains_gg16S_aligned.fasta.gz) , and the NCBI 16S rRNA reference sequence set (https://ftp.ncbi.nlm.nih.gov/blast/db/16S_ribosomal_RNA.tar.gz). These sequences were screened and combined to remove short sequences (<1000nt), chimera, duplicated and sub-sequences, as well as sequences with poor taxonomy annotation (e.g., without species information). This process resulted in 1,015 from HOMD V15.22, 495 from EXT, 3,940 from GG and 18,044 from NCBI, a total of 25,120 sequences. Altogether these sequence represent a total of 15,601 oral and non-oral microbial species.

The NCBI BLASTN version 2.7.1+ (Zhang et al, 2000) was used with the default parameters. Reads with ≥ 98% sequence identity to the matched reference and ≥ 90% alignment length (i.e., ≥ 90% of the read length that was aligned to the reference and was used to calculate the sequence percent identity) were classified based on the taxonomy of the reference sequence with highest sequence identity. If a read matched with reference sequences representing more than one species with equal percent identity and alignment length, it was subject to chimera checking with USEARCH program version v8.1.1861 (Edgar 2010). Non-chimeric reads with multi-species best hits were considered valid and were assigned with a unique species notation (e.g., spp) denoting unresolvable multiple species.

2. Unassigned reads (i.e., reads with < 98% identity or < 90% alignment length) were pooled together and reads < 200 bases were removed. The remaining reads were subject to the de novo operational taxonomy unit (OTU) calling and chimera checking using the USEARCH program version v8.1.1861 (Edgar 2010). The de novo OTU calling and chimera checking was done using 98% as the sequence identity cutoff, i.e., the species-level OTU. The output of this step produced species-level de novo clustered OTUs with 98% identity. Representative reads from each of the OTUs/species were then BLASTN-searched against the same reference sequence set again to determine the closest species for these potential novel species. These potential novel species were pooled together with the reads that were signed to specie-level in the previous step, for down-stream analyses.

Reference:
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12. PubMed PMID: 20709691.

3. Designations used in the taxonomy:

	1) Taxonomy levels are indicated by these prefixes:
	
	   k__: domain/kingdom
	   p__: phylum
	   c__: class
	   o__: order
	   f__: family
	   g__: genus  
	   s__: species
	
	   Example: 
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__faecis
		
	2) Unique level identified – known species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__hominis
	
	   The above example shows some reads match to a single species (all levels are unique)
	
	3) Non-unique level identified – known species:

	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__multispecies_spp123_3
	   
	   The above example “s__multispecies_spp123_3” indicates certain reads equally match to 3 species of the 
	   genus Roseburia; the “spp123” is a temporally assigned species ID.
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__multigenus;s__multispecies_spp234_5
	   
	   The above example indicates certain reads match equally to 5 different species, which belong to multiple genera.; 
	   the “spp234” is a temporally assigned species ID.
	
	4) Unique level identified – unknown species, potential novel species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ hominis_nov_97%
	   
	   The above example indicates that some reads have no match to any of the reference sequences with 
	   sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. However this groups 
	   of reads (actually the representative read from a de novo  OTU) has 96% percent identity to 
	   Roseburia hominis, thus this is a potential novel species, closest to Roseburia hominis. 
	   (But they are not the same species).
	
	5) Multiple level identified – unknown species, potential novel species:
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ multispecies_sppn123_3_nov_96%
	
	   The above example indicates that some reads have no match to any of the reference sequences 
	   with sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. 
	   However this groups of reads (actually the representative read from a de novo  OTU) 
	   has 96% percent identity equally to 3 species in Roseburia. Thus this is no single 
	   closest species, instead this group of reads match equally to multiple species at 96%. 
	   Since they have passed chimera check so they represent a novel species. “sppn123” is a 
	   temporary ID for this potential novel species. 

 
4. The taxonomy assignment algorithm is illustrated in this flow char below:
 
 
 
 

Read Taxonomy Assignment - Result Summary *

CodeCategoryMPC=0% (>=1 read)MPC=0.01%(>=95 reads)
ATotal reads1,694,5681,694,568
BTotal assigned reads956,263956,263
CAssigned reads in species with read count < MPC08,386
DAssigned reads in samples with read count < 50000
ETotal samples3030
FSamples with reads >= 5003030
GSamples with reads < 50000
HTotal assigned reads used for analysis (B-C-D)956,263947,877
IReads assigned to single species557,039555,326
JReads assigned to multiple species87,40687,406
KReads assigned to novel species311,818305,145
LTotal number of species588304
MNumber of single species178143
NNumber of multi-species1111
ONumber of novel species399150
PTotal unassigned reads738,305738,305
QChimeric reads27,14027,140
RReads without BLASTN hits366,440366,440
SOthers: short, low quality, singletons, etc.344,725344,725
A=B+P=C+D+H+Q+R+S
E=F+G
B=C+D+H
H=I+J+K
L=M+N+O
P=Q+R+S
* MPC = Minimal percent (of all assigned reads) read count per species, species with read count < MPC were removed.
* Samples with reads < 500 were removed from downstream analyses.
* The assignment result from MPC=0.1% was used in the downstream analyses.
 
 
 

Read Taxonomy Assignment - ASV Species-Level Read Counts Table

This table shows the read counts for each sample (columns) and each species identified based on the ASV sequences. The downstream analyses were based on this table.
SPIDTaxonomyF15127.S01F15127.S02F15127.S03F15127.S04F15127.S05F15127.S06F15127.S07F15127.S08F15127.S09F15127.S10F15127.S11F15127.S12F15127.S13F15127.S14F15127.S15F15127.S16F15127.S17F15127.S18F15127.S19F15127.S20F15127.S21F15127.S22F15127.S23F15127.S24F15127.S25F15127.S26F15127.S27F15127.S28F15127.S29F15127.S30
SP1Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-5];bacterium_MOT-1700000000000000000001701062140221112300069
SP102Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._vincentii000000007940000033400166000000000000
SP104Bacteria;Firmicutes;Erysipelotrichi;Erysipelotrichales;Erysipelotrichaceae;Ileibacterium;valens000000000000000000140047525104031900030
SP105Bacteria;Proteobacteria;Gammaproteobacteria;Moraxellales;Moraxellaceae;Acinetobacter;radioresistens0000000007100002970020000000000000
SP106Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;salivarius00000010400000000000000000000000
SP107Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;mitis00000000000160000000000000000000
SP108Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;pasteuri00000000151000000000000000000000
SP109Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Sutterellaceae;Parasutterella;excrementihominis32311600000000000000001057863831909608285141854810699761091153
SP111Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Acutalibacter;muris000000000000000000370000000471000
SP112Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;acidifaciens00000000000000000000003684000000312
SP113Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis_subsp._tigurinus_clade_07100000000000000007700000000000000
SP116Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-1850000000000000160100000000000000023
SP117Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Citrobacter;koseri00028448628104130000044600000000050387262800000157
SP118Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus;intestinalis00000000000000000003641525604798091224136034
SP119Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;showae00000000000000004390000000000000
SP12Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Enterobacter;cloacae0001499004240000309000178149000010500000000
SP121Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingomonas;zeae00000000000117000000000000000000
SP123Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Fusobacteriaceae;Cetobacterium;somerae000000000000000113900000000000000
SP124Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;denticola000000000219036000000000000000000
SP126Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus;johnsonii000000002260014900000028948300029500000152
SP127Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Enterobacter;hormaechei0009560286433467600000231000243000000165502512123000970531
SP129Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;gordonii00000000341000539000019000000000000
SP13Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis000000000000268051600253000000000000
SP130Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Shigella;flexneri000000000031201490612000000000000000
SP132Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;periodonticum0000000000022600000265000000000000
SP133Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-1];bacterium_MOT-1580000000000000000000000000073562130
SP134Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;longum00000000000000001200000000000000
SP135Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriaceae;Pseudoramibacter;alactolyticus00000000000000014300000000000000
SP136Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Microbacteriaceae;Agromyces;mediolanus000000002350000006100000000000000
SP137Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;tannerae00000003480000000000000000000000
SP138Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-4];bacterium HMT36900000000000050500000000000000000
SP139Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] symbiosum12100002300000000000000194802800002700
SP14Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT06400000000000000013100000000000000
SP140Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Bradyrhizobiaceae;Bradyrhizobium;pachyrhizi00000000000000000266000000000000
SP141Bacteria;Firmicutes;Clostridia;Eubacteriales;Peptococcaceae;Peptococcaceae_[G-1];bacterium_MOT-14600000000000000000035090000078007
SP142Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Peptidiphaga;sp. HMT18300000002080000000000000000000000
SP143Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Microbacteriaceae;Leucobacter;chromiiresistens00000000250001052950002420000000000000
SP144Bacteria;Proteobacteria;Gammaproteobacteria;Moraxellales;Moraxellaceae;Acinetobacter;lwoffii00000000265000364988002010000000000000
SP145Bacteria;Deinococcus-Thermus;Deinococci;Deinococcales;Deinococcaceae;Deinococcus;geothermalis0000000000726000140000000000000000
SP146Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;flueggei00000000000000027100000000000000
SP147Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Catonella;sp. HMT16400000000000000000116000000000000
SP148Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;nigrescens00000000179000000000000000000000
SP149Bacteria;Actinobacteria;Coriobacteriia;Eggerthellales;Eggerthellaceae;Adlercreutzia;caecimuris000000000000000000005500230008026
SP15Bacteria;Proteobacteria;Gammaproteobacteria;Moraxellales;Moraxellaceae;Acinetobacter;johnsonii00000017968105837001894199828455410964000000000000
SP151Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Filifactor;alocis00000000000147000000000000000000
SP152Bacteria;Deferribacteres;Deferribacteres;Deferribacterales;Mucispirillaceae;Mucispirillum;schaedleri0000000000000000002070140740300300004
SP156Bacteria;Proteobacteria;Alphaproteobacteria;Hyphomicrobiales;Methylobacteriaceae;Methylobacterium;brachiatum00000000739000000000000000000000
SP157Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Atlantibacter;hermannii000000092260000006700000000000000
SP158Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;acidominimus002227810356000000000000000000000000
SP159Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis_subsp._dentisani_clade_05800000000000000228000000000000000
SP16Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;haemolyticus00000000144000000000000000000000
SP161Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;aphrophilus00000000000020900000000000000000
SP164Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;aurimucosum00000000000130000000000000000000
SP165Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis_subsp._tigurinus_clade_07000000000000023000000000000000000
SP166Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;mutans000000000000010190000000000000000
SP168Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Butyrivibrio;sp. HMT08000000000000000015700000000000000
SP170Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;sp. HMT51200000000005340000000000000000000
SP171Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Johnsonella;sp. HMT16600000000000032500000000000000000
SP172Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-6];bacterium_MOT-15300000000000000000040000180075000
SP176Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT30400000000000012900000000000000000
SP177Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-3];bacterium_MOT-16800000000000000000000009100022000
SP179Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;Desulfobulbus;sp. HMT04100000014200000000000000000000000
SP18Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Intrasporangiaceae;Janibacter;melonis000000000000000762310000000000000
SP180Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;melaninogenica00000000000000001450000000000000
SP181Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT89600000000134000000000000000000000
SP185Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Dialister;pneumosintes00000000000022700000000000000000
SP186Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;matruchotii00000000000004050000000000000000
SP187Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Ruthenibacterium;lactatiformans0060000000000000000098767000043170
SP189Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;disporicum00000000000000000000000059902300
SP19Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Limosilactobacillus;reuteri9101000000000000092008342018218000456164365730302
SP191Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;sp. HMT17800000035400000000000000000000000
SP192Bacteria;Firmicutes;Bacilli;Bacillales;Bacillales Family X. Incertae Sedis;Thermicanus;aegyptius00000000000000002330000000000000
SP194Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri00000000000000000000000214000000
SP195Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;warneri00000000000000000250000000000000
SP196Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;dentocariosa00000000000047400000000000000000
SP197Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT44800000000000006720000000000000000
SP198Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;buccalis00000000251000000000000000000000
SP20Bacteria;Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Akkermansiaceae;Akkermansia;muciniphila501300000201000000000327246044958194432913472002763671463118
SP201Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT41400000000000000000108000000000000
SP21Bacteria;Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Alishewanella;agri00000000292000000000000000000000
SP22Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sinensis00000000000000012000000000000000
SP23Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Kosakonia;sacchari000140550000780095700000000057000000000
SP24Bacteria;Firmicutes;Erysipelotrichi;Erysipelotrichales;Erysipelotrichaceae;Erysipelotrichaceae_[G-1];bacterium_MOT-18900400000000000000025938165520687003252580270253400
SP25Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;endodontalis0000000044001930041900200000000000000
SP26Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Propionibacteriaceae;Cutibacterium;acnes00300024809100018002686034470398000000000000
SP27Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;danieliae3214002219000000000000000450030000
SP3Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Klebsiella;pneumoniae000000793671391805915549812132120043518847000000000000
SP30Bacteria;Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus;faecalis02798018603361290000129000650019740707850442735232215384307
SP31Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Morganellaceae;Proteus;mirabilis0000009608201437372185221060002430188104000000000000
SP32Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Mogibacterium;timidum00000000010900000000000000000000
SP33Bacteria;Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Sphingobacteriaceae;Sphingobacterium;multivorum000000001540045205860000000000000000
SP34Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-1];bacterium_MOT-15900000000000000000030011300128605243900
SP35Bacteria;Bacteroidetes;Bacteroidetes_[C-1];Bacteroidetes_[O-1];Bacteroidetes_[F-1];Bacteroidetes_[G-5];bacterium HMT51100000000000000002490000000000000
SP36Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Enterocloster;bolteae025000700000000000000021640360001600
SP37Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculum;intestinale00000000000000000000001031429720830000512
SP38Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;segnis0000000099000000000000000000000
SP39Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Ligilactobacillus;murinus1444721271230781877000000000000316321041955606316743223112883395986276752584976
SP4Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Shigella;sonnei00000012800051500000061000000000000
SP40Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-17800000000000000000017011701200000031
SP41Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-4];bacterium_MOT-164000000000000000000003364004871790250
SP44Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum0000000025015376516377500000000000000000
SP45Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas;putida0000000014300019600000000000000000
SP46Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-2];bacterium_MOT-162000000000000000000001510059127026131000
SP47Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;buccae00000000000026200000000000000000
SP49Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;capitis00000000000401000000000000000000
SP5Bacteria;Bacteroidota;Flavobacteriia;Flavobacteriales;Weeksellaceae;Chryseobacterium;gambrini00000027219510200559237541575137459311183000000000000
SP52Bacteria;Actinobacteria;Actinomycetia;Propionibacteriales;Propionibacteriaceae;Enemella;evansiae00000000000000562000000000000000
SP53Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Enterobacter;asburiae00000000006440000000000000000000
SP55Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Dialister;invisus000000000062588000000000000000000
SP57Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Microbacteriaceae;Microbacterium;maritypicum00000001994903900252136702372450000000000000
SP58Bacteria;Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus;gallinarum101076679149211711664539000000000000304578412920000000
SP59Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;thoraltensis5425837812142184830727860000098000000280000000000
SP6Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;ureilyticus00000000000000060100000000000000
SP60Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;concisus00000000430000000000000000000000
SP61Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;morbillorum0000000011001300001150110000000000000
SP64Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Hungatella;hathewayi7940613521380000000000000052311000003300
SP65Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;pasteri00000000219000000000000000000000
SP66Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Parabacteroides;distasonis000000000000000000000000601141000131
SP67Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;gingivalis0000000010600160000000000000000000
SP7Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseriaceae_[G-1];bacterium_MOT-031690522358097680701000000000000060000000000
SP70Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-1];bacterium_MOT-129002000000000000064017014802602727183814626191537281021228015
SP71Bacteria;Proteobacteria;Gammaproteobacteria;Xanthomonadales;Xanthomonadaceae;Stenotrophomonas;[Pseudomonas] hibiscicola00000015700000000000000000000000
SP73Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Parabacteroides;goldsteinii0000000000000000006592227192370553111516205783052157338
SP74Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;Acidovorax;temperans000000004100013700000000000000000
SP75Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT47300000000000002660000000000000000
SP76Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Nocardiaceae;Rhodococcus;qingshengii000000174015374200451048057500000000000000
SP77Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Faecalibaculum;rodentium00000000000000000013713583308252142317462016
SP78Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;pseudolongum000330000014800000000823022918855021110348
SP79Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Enterobacter;cancerogenus00015004000000031100300000031400000000
SP8Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Bacteroidaceae;Phocaeicola;sartorii00000025301900023200000000000000000721
SP80Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Lawsonellaceae;Lawsonella;clevelandensis0000000000003330749000000000000000
SP81Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;sp. HMT04400000000000020800000000000000000
SP82Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;Acidovorax;ebreus0000000015800000001330000000000000
SP83Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Rikenellaceae;Alistipes;sp._MOT-1270060000000000000000100718376570001445228045
SP84Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Escherichia;fergusonii00000000000147000000000000000000
SP91Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;saccharolyticus00000000000000024100000000000000
SP92Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT21900000000000000000122000000000000
SP93Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;cristatus_clade_5780000000000096000000000000000000
SP94Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-10400000000000000000000000000000103
SP95Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;chosunense00000000000160000000000000000000
SP96Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Blautia;hominis0000000000000000000002517800006600
SP97Bacteria;Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus;casseliflavus0095800000533000003813500000000000046145
SP98Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sanguinis0000000000011500000152000000000000
SPN100Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_91.853%0000000000000000000000001736907000661
SPN107Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_85.686%00000000000000000000054600000002649
SPN108Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Anaeromassilibacillus;senegalensis_nov_93.390%03009247000000000000754093916000109000
SPN109Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-1];bacterium_MOT-129_nov_89.431%70000000000000000010301133032559062581108795301846039307558
SPN11Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lacrimispora;xylanolytica_nov_93.789%000000000000000000790260900270026000
SPN118Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_90.184%00000000000036200000000000002347000
SPN120Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-7];bacterium_MOT-172_nov_93.279%00000000000000000000000000387880
SPN126Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT473 nov_89.366%000000000000000000000000000002682
SPN13Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-1];bacterium_MOT-129_nov_87.576%0000000000000000008009434573745920634391001462159
SPN131Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_92.915%00000000000000000000000000398000
SPN132Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;hofstadii_nov_96.970%00000039400000022590000000000000000
SPN137Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-1];bacterium_MOT-129_nov_86.640%000000000000000000267502895015210324485000100
SPN142Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Marinisporobacter;balticus_nov_82.692%000000000000000000000510601109740470
SPN144Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_89.621%00800000000000000000980000628015610
SPN149Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Rikenellaceae;Alistipes;senegalensis_nov_93.648%000000000000000000007710012000013900
SPN153Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Anaerostipes;caccae_nov_96.328%02194036600000000000000580032000009
SPN156Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Rikenellaceae;Alistipes;putredinis_nov_94.444%004000000000000000361551055198190000374071
SPN161Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-3];bacterium_MOT-168_nov_92.902%000000000000000000546650000000118000
SPN164Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_90.612%00000035600016400031400014152050555988232972601429203988
SPN170Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Erysipelatoclostridium;[Clostridium] innocuum_nov_88.270%00000000000000000044009009957012754514
SPN174Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-1];bacterium_MOT-129_nov_86.427%000000000000000000000003190000013
SPN175Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Rikenellaceae;Alistipes;finegoldii_nov_93.608%030000000000000000733510041900923700024
SPN185Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Hathewaya;proteolytica_nov_83.514%0000000000000000006028027110023189635
SPN191Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_93.699%00000000000000002150000000001418000
SPN194Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-1];bacterium_MOT-129_nov_90.816%00000000000004110000000000439212000559
SPN196Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_95.198%00000003080000000000000000000000
SPN199Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Beduini;massiliensis_nov_87.705%0000000000000000001451047001243903837910628420
SPN206Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_86.600%0000000000000000000000007827360000
SPN207Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Phocea;massiliensis_nov_90.129%000000000000286000001800000000000
SPN210Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_87.424%0000000000000000000000013800000085
SPN217Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Acutalibacter;muris_nov_96.289%00000000000003030000000000000000
SPN218Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-3];bacterium_MOT-150_nov_93.582%00000000000000000056304100149411000
SPN22Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_89.400%0000000000000000000019000841305900013
SPN220Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Longibaculum;muris_nov_86.957%0000000000000000005051356901360411805115011
SPN228Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Parabacteroides;distasonis_nov_97.938%000000000000000000000000839202000332
SPN229Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Flavonifractor;plautii_nov_92.308%00000000000000000000000000297000
SPN23Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_86.842%000000000000000000916150300380000002841
SPN238Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-1];bacterium_MOT-129_nov_86.290%0000000000000000004441780010203162540000
SPN240Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Blautia;luti_nov_94.561%000000000000000000000002830000130
SPN242Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_88.822%000000000000000000000000001270000
SPN246Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-4];bacterium_MOT-164_nov_97.655%000000000000000000000000001264000
SPN249Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_88.330%0000000000000000000000001489100036
SPN254Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-7];bacterium_MOT-172_nov_91.718%00000000000000000038115300013010570017
SPN256Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_87.071%000000000000000000000000000001165
SPN259Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_93.712%0000001360000058936703300000000000000
SPN260Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Caproiciproducens;galactitolivorans_nov_83.789%000000000000000000000070002401305
SPN265Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;uniformis_nov_95.893%0000000000000000000000933000000123
SPN270Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Faecalimonas;umbilicata_nov_94.549%00000000000000000000762840470037140
SPN271Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] scindens_nov_89.027%000000000000000000000000001015000
SPN272Bacteria;Tenericutes;Mollicutes;Anaeroplasmatales;Anaeroplasmataceae;Anaeroplasma;abactoclasticum_nov_86.538%00000000000000000009011160068790045
SPN274Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;azizii_nov_95.171%7836472101350575933270000000000000250060000000
SPN275Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-3];bacterium_MOT-150_nov_91.134%00000000000000000011000360100854570
SPN278Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Acetivibrio;cellulolyticus_nov_83.405%0000000000000000006287642131412049415730
SPN281Bacteria;Firmicutes;Mollicutes;Mollicutes_[O-2];Mollicutes_[F-2];Mollicutes_[G-2];bacterium_MOT-187_nov_90.253%000000000000000000001470048185140270
SPN283Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_87.221%000000000000000000000010000000887
SPN291Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT317 nov_90.244%00000000000000000000000000000826
SPN292Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales Family XIII. Incertae Sedis;Ihubacter;massiliensis_nov_94.572%000000000000000000191186000390890012
SPN293Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_89.697%00000000000000000000000091291000428
SPN297Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_93.319%00000000000027846000000000009024000
SPN30Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_88.577%000000000000000000123461550607390947945000245
SPN303Bacteria;Firmicutes;Clostridia;Eubacteriales;Christensenellaceae;Christensenella;massiliensis_nov_88.041%00000000000000000019240283702705447019
SPN306Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_87.400%000000000000000000000006400000099
SPN309Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lacrimispora;xylanolytica_nov_94.363%00000000000000000000000000709000
SPN314Bacteria;Firmicutes;Clostridia;Clostridiales;Clostridiales_[F-1];Clostridiales_[F-1][G-2];bacterium HMT402 nov_82.255%000000000000000000011000000239000
SPN316Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-3];bacterium_MOT-168_nov_94.792%0000000000088000102001560000000337000
SPN320Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_89.919%00000017102291090000000138000000000000
SPN321Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Longibaculum;muris_nov_90.289%00000000000000000014000058287770610103
SPN322Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_89.135%00000000850027000380000000981001980000
SPN323Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_86.028%0000000000000000000000118440000081
SPN324Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Turicibacteraceae;Turicibacter;sanguinis_nov_95.923%0000000000000000000015133034632401300
SPN325Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-6];bacterium_MOT-171_nov_94.549%000000000000000000764160162023020000
SPN326Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-10];bacterium_MOT-175_nov_90.408%0000000000000000009027064000137000
SPN327Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Odoribacteraceae;Odoribacter;splanchnicus_nov_90.779%0000000000000000000001020000012200
SPN328Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-185_nov_92.719%000000000000000000000012000212000
SPN329Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Hathewaya;proteolytica_nov_83.297%000000000000000000003917000191000
SPN33Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Blautia;schinkii_nov_93.711%000000000000000000000004410000200
SPN330Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-4];bacterium_MOT-164_nov_97.655%00000000000000000000000000000208
SPN331Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Lawsonibacter;asaccharolyticus_nov_90.722%00000000000000000000208000000000
SPN332Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_89.069%00000000000000000000000000000191
SPN333Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Rikenellaceae;Alistipes;senegalensis_nov_93.089%00000000000000018800000000000000
SPN334Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Faecalicatena;orotica_nov_92.484%00000000000000000000000000188000
SPN335Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-3];bacterium_MOT-150_nov_92.931%000000000000000000000000000518016
SPN336Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-6];bacterium_MOT-171_nov_93.515%000000000000000000250033211000830011
SPN337Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT169 nov_97.992%00000000000018300000000000000000
SPN338Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-3];bacterium HMT351 nov_94.411%000000000000000000270000200153000
SPN339Bacteria;Firmicutes;Clostridia;Clostridiales;Eubacteriaceae_[XV];Eubacterium;coprostanoligenes_nov_91.631%0000000000000000000004000171410012
SPN340Bacteria;Firmicutes;Clostridia;Halanaerobiales;Halobacteroidaceae;Natroniella;acetigena_nov_80.992%00000000000000001740000000000000
SPN341Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-1];bacterium_MOT-129_nov_84.929%0000000000000000002284264800113408185450332400
SPN342Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_88.623%000000000000000000000000994200032
SPN343Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Hydrogenoanaerobacterium;saccharovorans_nov_90.249%000000000000000000370046307056000
SPN344Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-6];bacterium_MOT-171_nov_94.572%00000000970000000000000000065000
SPN345Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Phocea;massiliensis_nov_90.426%000000000000000000900210300814700
SPN346Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Neglectibacter;timonensis_nov_95.325%0000000000000000000002570000397880
SPN347Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Butyrivibrio;proteoclasticus_nov_83.594%000000001070000000000000051000000
SPN348Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-3];bacterium_MOT-163_nov_84.913%000000000000000000000000000381170
SPN349Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-1];bacterium_MOT-129_nov_86.089%000000001450000000004067152500147296507112600043
SPN350Bacteria;Bacteroidetes;Bacteroidetes_[C-1];Bacteroidetes_[O-1];Bacteroidetes_[F-1];Bacteroidetes_[G-3];bacterium HMT436 nov_86.585%00000000000000000000015100000000
SPN351Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_88.978%000000000000000000000000475700044
SPN352Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-5];bacterium_MOT-170_nov_97.904%0000000000000000000063060000012120
SPN353Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Phocea;massiliensis_nov_87.179%000000000000000000293401025050166210
SPN354Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-4];bacterium_MOT-151_nov_95.417%000000000000000000280000000042073
SPN355Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-13];bacterium_MOT-181_nov_91.189%000000000000000000004018000120000
SPN356Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Eisenbergiella;massiliensis_nov_84.867%0000000000000000001100000000022010
SPN357Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Sporobacter;termitidis_nov_87.580%00000000000000000010425570011098245430
SPN358Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-177_nov_88.296%00000000000000000000000000141000
SPN359Bacteria;Firmicutes;Clostridia;Eubacteriales;Christensenellaceae;Christensenella;hongkongensis_nov_86.308%00000000000000000000000700477608
SPN360Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-182_nov_90.254%00000000137000000000000000000000
SPN361Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;phytofermentans_nov_90.417%00000000000000000000000000133000
SPN362Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Blautia;marasmi_nov_93.711%000000000000000000410027000056008
SPN363Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-1];bacterium_MOT-129_nov_83.636%000000000000000000000025501589000003670
SPN364Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Butyricicoccus;pullicaecorum_nov_85.093%000000000000000000000000001191200
SPN365Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT137 nov_97.228%00000000000127000000000000000000
SPN366Bacteria;Firmicutes;Mollicutes;Mollicutes_[O-2];Mollicutes_[F-2];Mollicutes_[G-2];bacterium_MOT-187_nov_95.481%0000000000000000000000190006303110
SPN367Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-6];bacterium_MOT-153_nov_83.582%00000000000000000000000000122000
SPN368Bacteria;Firmicutes;Clostridia;Clostridiales;Eubacteriaceae_[XV];Eubacterium;xylanophilum_nov_91.075%00000000000000000033000030004130280
SPN369Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales Family XIII. Incertae Sedis;Ihubacter;massiliensis_nov_90.644%000000000000000000950008230280046
SPN370Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;shahii_nov_87.602%000003000000000000000011032110195814690001093
SPN371Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Anaerotruncus;rubiinfantis_nov_92.500%00000000000000000000000000118000
SPN372Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-3];bacterium_MOT-163_nov_85.944%00000000000000000000000080110000
SPN373Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_89.379%00000000000000000000000000000115
SPN374Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Anaerotignum;faecicola_nov_85.396%00000000000000000000000000013094
SPN375Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-1];bacterium_MOT-166_nov_95.643%00000000000000000000000100000097
SPN376Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_85.685%0000000000000000000000160481300030
SPN377Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Gluceribacter;canis_nov_93.305%0000000000000000008122272639406003090049916680
SPN378Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-4];bacterium_MOT-164_nov_92.373%000000000000000000110650060021000
SPN379Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Parafannyhessea;umbonata_nov_92.161%60239001170000000000000312800401950000
SPN380Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonellaceae_[G-1];bacterium HMT129 nov_96.356%00000000000000010300000000000000
SPN381Bacteria;Actinobacteria;Coriobacteriia;Eggerthellales;Eggerthellaceae;Adlercreutzia;muris_nov_97.186%0000000000000000002448014007100000
SPN382Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_94.802%000000000000000000110000000730013
SPN383Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-6];bacterium_MOT-171_nov_91.423%0000000000000000002100015012049000
SPN384Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Hydrogenoanaerobacterium;saccharovorans_nov_88.797%0000000000000000004500013000175016
SPN385Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Kineothrix;alysoides_nov_86.667%0000000000000000009600000000000
SPN390Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Lawsonibacter;asaccharolyticus_nov_90.329%000000000000000000180130001969700000
SPN42Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] aminophilum_nov_87.318%00000000000000000000000000460000
SPN45Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_92.653%000000000000000000000010972172982516000215
SPN5Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_86.290%00000000000000000026124262210164475122721682311590164
SPN52Bacteria;Bacteroidota;Flavobacteriia;Flavobacteriales;Weeksellaceae;Chryseobacterium;yeoncheonense_nov_97.484%00000000115977521405364314747307335378000000000000
SPN53Bacteria;Acidobacteria;Blastocatellia;Blastocatellales;Pyrinomonadaceae;Pyrinomonas;methylaliphatogenes_nov_96.809%00000000004580000000000000000000
SPN58Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT473 nov_89.634%000000000000000000000000220121300000
SPN64Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Muricomes;intestini_nov_89.583%000000000000000000322217130000202279838
SPN67Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_86.373%0000000000000000001349600084928605575030000
SPN71Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_86.000%000000000000000000133959608342501653148400064
SPN75Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-178_nov_89.293%000000000000000000191600078000000113
SPN86Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] polysaccharolyticum_nov_92.083%00000000000004310000000000000000
SPN88Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_91.039%000000000000000010501803540000033190450
SPN92Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_91.429%000000000000000000328732120224648130234710290826002959
SPN93Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_87.169%00000000000000000000000000296004100
SPN97Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_86.948%0000000000000000000000145000000278
SPP1Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingomonas;multispecies_spp1_200000014900000000000000000000000
SPP10Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;multispecies_spp10_20000000000000002400112000000000000
SPP11Bacteria;Firmicutes;Bacilli;Bacillales;Bacillaceae;Bacillus;multispecies_spp11_6000000389004600406000000000000000000
SPP2Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;multispecies_spp2_3317401997711194111671326300000121000004902000000150110
SPP3Bacteria;Proteobacteria;Gammaproteobacteria;Moraxellales;Moraxellaceae;Psychrobacter;multispecies_spp3_200000018200000000000000000000000
SPP4Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;multispecies_spp4_200000024200000000000000000000000
SPP5Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;multigenus;multispecies_spp5_2001148602655143000000000000000007000000
SPP6Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp6_200000000000000033300000000000000
SPP7Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp7_200000000000000000148000000000000
SPP8Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;multispecies_spp8_20000000055218101351000942870000000000000
SPP9Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Faecalicatena;multispecies_spp9_20000840000000000000000055000024015
SPPN7Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Faecalicatena;multispecies_sppn7_2_nov_91.858%00000000000000000062203772192025062101950
SPPN9Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Faecalicatena;multispecies_sppn9_2_nov_94.363%0000000000000000000000016400385000
 
 
Download OTU Tables at Different Taxonomy Levels
PhylumCount*: Relative**: CLR***:
ClassCount*: Relative**: CLR***:
OrderCount*: Relative**: CLR***:
FamilyCount*: Relative**: CLR***:
GenusCount*: Relative**: CLR***:
SpeciesCount*: Relative**: CLR***:
* Read count
** Relative abundance (count/total sample count)
*** Centered log ratio transformed abundance
;
 
The species listed in the table has full taxonomy and a dynamically assigned species ID specific to this report. When some reads match with the reference sequences of more than one species equally (i.e., same percent identiy and alignmnet coverage), they can't be assigned to a particular species. Instead, they are assigned to multiple species with the species notaton "s__multispecies_spp2_2". In this notation, spp2 is the dynamic ID assigned to these reads that hit multiple sequences and the "_2" at the end of the notation means there are two species in the spp2.

You can look up which species are included in the multi-species assignment, in this table below:
 
 
 
 
Another type of notation is "s__multispecies_sppn2_2", in which the "n" in the sppn2 means it's a potential novel species because all the reads in this species have < 98% idenity to any of the reference sequences. They were grouped together based on de novo OTU clustering at 98% identity cutoff. And then a representative sequence was chosed to BLASTN search against the reference database to find the closest match (but will still be < 98%). This representative sequence also matched equally to more than one species, hence the "spp" was given in the label.
 
 

Taxonomy Bar Plots for All Samples

 
 

Taxonomy Bar Plots for Individual Comparison Groups

 
 
Comparison No.Comparison NameFamiliesGeneraSpecies
Comparison 1Ligature Female Perio vs Ligature Male PerioPDFSVGPDFSVGPDFSVG
Comparison 2Brain Perio vs Brain Non-perioPDFSVGPDFSVGPDFSVG
Comparison 3Brain Female Perio vs Brain Male PerioPDFSVGPDFSVGPDFSVG
Comparison 4Brain Female Non-perio vs Brain Male Non-perioPDFSVGPDFSVGPDFSVG
Comparison 5Stool Perio vs Stool Non-perioPDFSVGPDFSVGPDFSVG
Comparison 6Stool Female Perio vs Stool Male PerioPDFSVGPDFSVGPDFSVG
Comparison 7Stool Female Non-perio vs Stool Male Non-perioPDFSVGPDFSVGPDFSVG
 
 

VIII. Analysis - Alpha Diversity

 

In ecology, alpha diversity (α-diversity) is the mean species diversity in sites or habitats at a local scale. The term was introduced by R. H. Whittaker[1][2] together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites or habitats at a more local scale (alpha diversity) and the differentiation among those habitats (beta diversity).


References:
Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338. doi:10.2307/1943563
Whittaker, R. H. (1972). Evolution and Measurement of Species Diversity. Taxon, 21, 213-251. doi:10.2307/1218190

 

Alpha Diversity Analysis by Rarefaction

Diversity measures are affected by the sampling depth. Rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples. Rarefaction curves generally grow rapidly at first, as the most common species are found, but the curves plateau as only the rarest species remain to be sampled.


References:
Willis AD. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol. 2019 Oct 23;10:2407. doi: 10.3389/fmicb.2019.02407. PMID: 31708888; PMCID: PMC6819366.

 
 
 

Boxplot of Alpha-diversity Indices

The two main factors taken into account when measuring diversity are richness and evenness. Richness is a measure of the number of different kinds of organisms present in a particular area. Evenness compares the similarity of the population size of each of the species present. There are many different ways to measure the richness and evenness. These measurements are called "estimators" or "indices". Below is a diversity of 3 commonly used indices showing the values for all the samples (dots) and in groups (boxes).

 
Alpha Diversity Box Plots for All Groups
 
 
 
 
 
 
 
Alpha Diversity Box Plots for Individual Comparisons
 
Comparison 1Ligature Female Perio vs Ligature Male PerioView in PDFView in SVG
Comparison 2Brain Perio vs Brain Non-perioView in PDFView in SVG
Comparison 3Brain Female Perio vs Brain Male PerioView in PDFView in SVG
Comparison 4Brain Female Non-perio vs Brain Male Non-perioView in PDFView in SVG
Comparison 5Stool Perio vs Stool Non-perioView in PDFView in SVG
Comparison 6Stool Female Perio vs Stool Male PerioView in PDFView in SVG
Comparison 7Stool Female Non-perio vs Stool Male Non-perioView in PDFView in SVG
 
 
 

Group Significance of Alpha-diversity Indices

To test whether the alpha diversity among different comparison groups are different statistically, we use the Kruskal Wallis H test provided the "alpha-group-significance" fucntion in the QIIME 2 "diversity" package. Kruskal Wallis H test is the non-parametric alternative to the One Way ANOVA. Non-parametric means that the test doesn’t assume your data comes from a particular distribution. The H test is used when the assumptions for ANOVA aren’t met (like the assumption of normality). It is sometimes called the one-way ANOVA on ranks, as the ranks of the data values are used in the test rather than the actual data points. The H test determines whether the medians of two or more groups are different.

Below are the Kruskal Wallis H test results for each comparison based on three different alpha diversity measures: 1) Observed species (features), 2) Shannon index, and 3) Simpson index.

 
 
Comparison 1.Ligature Female Perio vs Ligature Male PerioObserved FeaturesShannon IndexSimpson Index
Comparison 2.Brain Perio vs Brain Non-perioObserved FeaturesShannon IndexSimpson Index
Comparison 3.Brain Female Perio vs Brain Male PerioObserved FeaturesShannon IndexSimpson Index
Comparison 4.Brain Female Non-perio vs Brain Male Non-perioObserved FeaturesShannon IndexSimpson Index
Comparison 5.Stool Perio vs Stool Non-perioObserved FeaturesShannon IndexSimpson Index
Comparison 6.Stool Female Perio vs Stool Male PerioObserved FeaturesShannon IndexSimpson Index
Comparison 7.Stool Female Non-perio vs Stool Male Non-perioObserved FeaturesShannon IndexSimpson Index
 
 

IX. Analysis - Beta Diversity

 

NMDS and PCoA Plots

Beta diversity compares the similarity (or dissimilarity) of microbial profiles between different groups of samples. There are many different similarity/dissimilarity metrics. In general, they can be quantitative (using sequence abundance, e.g., Bray-Curtis or weighted UniFrac) or binary (considering only presence-absence of sequences, e.g., binary Jaccard or unweighted UniFrac). They can be even based on phylogeny (e.g., UniFrac metrics) or not (non-UniFrac metrics, such as Bray-Curtis, etc.).

For microbiome studies, species profiles of samples can be compared with the Bray-Curtis dissimilarity, which is based on the count data type. The pair-wise Bray-Curtis dissimilarity matrix of all samples can then be subject to either multi-dimensional scaling (MDS, also known as PCoA) or non-metric MDS (NMDS).

MDS/PCoA is a scaling or ordination method that starts with a matrix of similarities or dissimilarities between a set of samples and aims to produce a low-dimensional graphical plot of the data in such a way that distances between points in the plot are close to original dissimilarities.

NMDS is similar to MDS, however it does not use the dissimilarities data, instead it converts them into the ranks and use these ranks in the calculation.

In our beta diversity analysis, Bray-Curtis dissimilarity matrix was first calculated and then plotted by the PCoA and NMDS separately. Below are beta diveristy results for all groups together:

 
 
NMDS and PCoA Plots for All Groups
 
 
 
 
 

The above PCoA and NMDS plots are based on count data. The count data can also be transformed into centered log ratio (CLR) for each species. The CLR data is no longer count data and cannot be used in Bray-Curtis dissimilarity calculation. Instead CLR can be compared with Euclidean distances. When CLR data are compared by Euclidean distance, the distance is also called Aitchison distance.

Below are the NMDS and PCoA plots of the Aitchison distances of the samples:

 
 
 
 
 
 
 
NMDS and PCoA Plots for Individual Comparisons
 
 
Comparison No.Comparison NameNMDAPCoA
Bray-CurtisCLR EuclideanBray-CurtisCLR Euclidean
Comparison 1Ligature Female Perio vs Ligature Male PerioPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 2Brain Perio vs Brain Non-perioPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 3Brain Female Perio vs Brain Male PerioPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 4Brain Female Non-perio vs Brain Male Non-perioPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 5Stool Perio vs Stool Non-perioPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 6Stool Female Perio vs Stool Male PerioPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 7Stool Female Non-perio vs Stool Male Non-perioPDFSVGPDFSVGPDFSVGPDFSVG
 
 
 
 
 

Interactive 3D PCoA Plots - Bray-Curtis Dissimilarity

 
 
 

Interactive 3D PCoA Plots - Euclidean Distance

 
 
 

Interactive 3D PCoA Plots - Correlation Coefficients

 
 
 

Group Significance of Beta-diversity Indices

To test whether the between-group dissimilarities are significantly greater than the within-group dissimilarities, the "beta-group-significance" function provided in the QIIME 2 "diversity" package was used with PERMANOVA (permutational multivariate analysis of variance) as the group significant testing method.

Three beta diversity matrics were used: 1) Bray–Curtis dissimilarity 2) Correlation coefficient matrix , and 3) Aitchison distance (Euclidean distance between clr-transformed compositions).

 
 
Comparison 1.Ligature Female Perio vs Ligature Male PerioBray–CurtisCorrelationAitchison
Comparison 2.Brain Perio vs Brain Non-perioBray–CurtisCorrelationAitchison
Comparison 3.Brain Female Perio vs Brain Male PerioBray–CurtisCorrelationAitchison
Comparison 4.Brain Female Non-perio vs Brain Male Non-perioBray–CurtisCorrelationAitchison
Comparison 5.Stool Perio vs Stool Non-perioBray–CurtisCorrelationAitchison
Comparison 6.Stool Female Perio vs Stool Male PerioBray–CurtisCorrelationAitchison
Comparison 7.Stool Female Non-perio vs Stool Male Non-perioBray–CurtisCorrelationAitchison
 
 
 

X. Analysis - Differential Abundance

16S rRNA next generation sequencing (NGS) generates a fixed number of reads that reflect the proportion of different species in a sample, i.e., the relative abundance of species, instead of the absolute abundance. In Mathematics, measurements involving probabilities, proportions, percentages, and ppm can all be thought of as compositional data. This makes the microbiome read count data “compositional” (Gloor et al, 2017). In general, compositional data represent parts of a whole which only carry relative information (http://www.compositionaldata.com/).

The problem of microbiome data being compositional arises when comparing two groups of samples for identifying “differentially abundant” species. A species with the same absolute abundance between two conditions, its relative abundances in the two conditions (e.g., percent abundance) can become different if the relative abundance of other species change greatly. This problem can lead to incorrect conclusion in terms of differential abundance for microbial species in the samples.

When studying differential abundance (DA), the current better approach is to transform the read count data into log ratio data. The ratios are calculated between read counts of all species in a sample to a “reference” count (e.g., mean read count of the sample). The log ratio data allow the detection of DA species without being affected by percentage bias mentioned above

In this report, a compositional DA analysis tool “ANCOM” (analysis of composition of microbiomes) was used. ANCOM transforms the count data into log-ratios and thus is more suitable for comparing the composition of microbiomes in two or more populations. "ANCOM" generates a table of features with W-statistics and whether the null hypothesis is rejected. The “W” is the W-statistic, or number of features that a single feature is tested to be significantly different against. Hence the higher the "W" the more statistical sifgnificant that a feature/species is differentially abundant.


References:

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017 Nov 15;8:2224. doi: 10.3389/fmicb.2017.02224. PMID: 29187837; PMCID: PMC5695134.

Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015 May 29;26:27663. doi: 10.3402/mehd.v26.27663. PMID: 26028277; PMCID: PMC4450248.

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 

ANCOM Differential Abundance Analysis

 
ANCOM Results for Individual Comparisons
Comparison No.Comparison Name
Comparison 1.Ligature Female Perio vs Ligature Male Perio
Comparison 2.Brain Perio vs Brain Non-perio
Comparison 3.Brain Female Perio vs Brain Male Perio
Comparison 4.Brain Female Non-perio vs Brain Male Non-perio
Comparison 5.Stool Perio vs Stool Non-perio
Comparison 6.Stool Female Perio vs Stool Male Perio
Comparison 7.Stool Female Non-perio vs Stool Male Non-perio
 
 

ANCOM-BC2 Differential Abundance Analysis

 

Starting with version V1.2, we include the results of ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) (Lin and Peddada 2020). ANCOM-BC is an updated version of "ANCOM" that:
(a) provides statistically valid test with appropriate p-values,
(b) provides confidence intervals for differential abundance of each taxon,
(c) controls the False Discovery Rate (FDR),
(d) maintains adequate power, and
(e) is computationally simple to implement.

The bias correction (BC) addresses a challenging problem of the bias introduced by differences in the sampling fractions across samples. This bias has been a major hurdle in performing DA analysis of microbiome data. ANCOM-BC estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework.

Starting with version V1.43, ANCOM-BC2 is used instead of ANCOM-BC, So that multiple pairwise directional test can be performed (if there are more than two gorups in a comparison). When performing pairwise directional test, the mixed directional false discover rate (mdFDR) is taken into account. The mdFDR is the combination of false discovery rate due to multiple testing, multiple pairwise comparisons, and directional tests within each pairwise comparison. The mdFDR is adopted from (Guo, Sarkar, and Peddada 2010; Grandhi, Guo, and Peddada 2016). For more detail explanation and additional features of ANCOM-BC2 please see author's documentation.

References:

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

Guo W, Sarkar SK, Peddada SD. Controlling false discoveries in multidimensional directional decisions, with applications to gene expression data on ordered categories. Biometrics. 2010 Jun;66(2):485-92. doi: 10.1111/j.1541-0420.2009.01292.x. Epub 2009 Jul 23. PMID: 19645703; PMCID: PMC2895927.

Grandhi A, Guo W, Peddada SD. A multiple testing procedure for multi-dimensional pairwise comparisons with application to gene expression studies. BMC Bioinformatics. 2016 Feb 25;17:104. doi: 10.1186/s12859-016-0937-5. PMID: 26917217; PMCID: PMC4768411.

 
 
ANCOM-BC Results for Individual Comparisons
 
Comparison No.Comparison Name
Comparison 1.Ligature Female Perio vs Ligature Male Perio
Comparison 2.Brain Perio vs Brain Non-perio
Comparison 3.Brain Female Perio vs Brain Male Perio
Comparison 4.Brain Female Non-perio vs Brain Male Non-perio
Comparison 5.Stool Perio vs Stool Non-perio
Comparison 6.Stool Female Perio vs Stool Male Perio
Comparison 7.Stool Female Non-perio vs Stool Male Non-perio
 
 
 

LEfSe - Linear Discriminant Analysis Effect Size

LEfSe (Linear Discriminant Analysis Effect Size) is an alternative method to find "organisms, genes, or pathways that consistently explain the differences between two or more microbial communities" (Segata et al., 2011). Specifically, LEfSe uses rank-based Kruskal-Wallis (KW) sum-rank test to detect features with significant differential (relative) abundance with respect to the class of interest. Since it is rank-based, instead of proportional based, the differential species identified among the comparison groups is less biased (than percent abundance based).

Reference:

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011 Jun 24;12(6):R60. doi: 10.1186/gb-2011-12-6-r60. PMID: 21702898; PMCID: PMC3218848.

 
Ligature Female Perio vs Ligature Male Perio
 
 
 
 
 
 
 
LEfSe Results for All Comparisons
 
Comparison No.Comparison Name
Comparison 1.Ligature Female Perio vs Ligature Male Perio
Comparison 2.Brain Perio vs Brain Non-perio
Comparison 3.Brain Female Perio vs Brain Male Perio
Comparison 4.Brain Female Non-perio vs Brain Male Non-perio
Comparison 5.Stool Perio vs Stool Non-perio
Comparison 6.Stool Female Perio vs Stool Male Perio
Comparison 7.Stool Female Non-perio vs Stool Male Non-perio
 
 

XI. Analysis - Heatmap Profile

 

Species vs Sample Abundance Heatmap for All Samples

 
 
 

Heatmaps for Individual Comparisons

 
A) Two-way clustering - clustered on both columns (Samples) and rows (organism)
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Ligature Female Perio vs Ligature Male PerioPDFSVGPDFSVGPDFSVG
Comparison 2Brain Perio vs Brain Non-perioPDFSVGPDFSVGPDFSVG
Comparison 3Brain Female Perio vs Brain Male PerioPDFSVGPDFSVGPDFSVG
Comparison 4Brain Female Non-perio vs Brain Male Non-perioPDFSVGPDFSVGPDFSVG
Comparison 5Stool Perio vs Stool Non-perioPDFSVGPDFSVGPDFSVG
Comparison 6Stool Female Perio vs Stool Male PerioPDFSVGPDFSVGPDFSVG
Comparison 7Stool Female Non-perio vs Stool Male Non-perioPDFSVGPDFSVGPDFSVG
 
 
B) One-way clustering - clustered on rows (organism) only
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Ligature Female Perio vs Ligature Male PerioPDFSVGPDFSVGPDFSVG
Comparison 2Brain Perio vs Brain Non-perioPDFSVGPDFSVGPDFSVG
Comparison 3Brain Female Perio vs Brain Male PerioPDFSVGPDFSVGPDFSVG
Comparison 4Brain Female Non-perio vs Brain Male Non-perioPDFSVGPDFSVGPDFSVG
Comparison 5Stool Perio vs Stool Non-perioPDFSVGPDFSVGPDFSVG
Comparison 6Stool Female Perio vs Stool Male PerioPDFSVGPDFSVGPDFSVG
Comparison 7Stool Female Non-perio vs Stool Male Non-perioPDFSVGPDFSVGPDFSVG
 
 
C) No clustering
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Ligature Female Perio vs Ligature Male PerioPDFSVGPDFSVGPDFSVG
Comparison 2Brain Perio vs Brain Non-perioPDFSVGPDFSVGPDFSVG
Comparison 3Brain Female Perio vs Brain Male PerioPDFSVGPDFSVGPDFSVG
Comparison 4Brain Female Non-perio vs Brain Male Non-perioPDFSVGPDFSVGPDFSVG
Comparison 5Stool Perio vs Stool Non-perioPDFSVGPDFSVGPDFSVG
Comparison 6Stool Female Perio vs Stool Male PerioPDFSVGPDFSVGPDFSVG
Comparison 7Stool Female Non-perio vs Stool Male Non-perioPDFSVGPDFSVGPDFSVG
 
 

XII. Analysis - Network Association

To analyze the co-occurrence or co-exclusion between microbial species among different samples, network correlation analysis tools are usually used for this purpose. However, microbiome count data are compositional. If count data are normalized to the total number of counts in the sample, the data become not independent and traditional statistical metrics (e.g., correlation) for the detection of specie-species relationships can lead to spurious results. In addition, sequencing-based studies typically measure hundreds of OTUs (species) on few samples; thus, inference of OTU-OTU association networks is severely under-powered. Here we use SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues (Kurtz et al., 2015). SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. SPIEC-EASI provides two algorithms for network inferencing – 1) Meinshausen-Bühlmann's neighborhood selection (MB method) and inverse covariance selection (GLASSO method, i.e., graphical least absolute shrinkage and selection operator). This is fundamentally distinct from SparCC, which essentially estimate pairwise correlations. In addition to these two methods, we provide the results of a third method - SparCC (Sparse Correlations for Compositional Data)(Friedman & Alm 2012), which is also a method for inferring correlations from compositional data. SparCC estimates the linear Pearson correlations between the log-transformed components.


References:

Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015 May 7;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226. PMID: 25950956; PMCID: PMC4423992.

Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20. PMID: 23028285; PMCID: PMC3447976.

 

SPIEC-EASI Network Inference by Neighborhood Selection (MB Method)

 

 

 

Association Network Inference by SparCC

 

 

 
 

XIII. Disclaimer

The results of this analysis are for research purpose only. They are not intended to diagnose, treat, cure, or prevent any disease. Forsyth and FOMC are not responsible for use of information provided in this report outside the research area.

 

Copyright FOMC 2023