FOMC Service Report

16S rRNA Gene V1V3 Amplicon Sequencing

Version V1.43

Version History

The Forsyth Institute, Cambridge, MA, USA
September 24, 2024

Project ID: FOMC16728_3


I. Project Summary

Project FOMC16728_3 services include NGS sequencing of the V1V3 region of the 16S rRNA gene amplicons from the samples. First and foremost, please download this report, as well as the sequence raw data from the download links provided below. These links will expire after 60 days. We cannot guarantee the availability of your data after 60 days.

Full Bioinformatics analysis service was requested. We provide many analyses, starting from the raw sequence quality and noise filtering, pair reads merging, as well as chimera filtering for the sequences, using the DADA2 denosing algorithm and pipeline.

We also provide many downstream analyses such as taxonomy assignment, alpha and beta diversity analyses, and differential abundance analysis.

For taxonomy assignment, most informative would be the taxonomy barplots. We provide an interactive barplots to show the relative abundance of microbes at different taxonomy levels (from Phylum to species) that you can choose.

If you specify which groups of samples you want to compare for differential abundance, we provide both ANCOM and LEfSe differential abundance analysis.

 

II. Workflow Checklist

1.Sample Received
2.Sample Quality Evaluated
3.Sample Prepared for Sequencing
4.Next-Gen Sequencing
5.Sequence Quality Check
6.Absolute Abundance
7.Report and Raw Sequence Data Available for Download
8.Bioinformatics Analysis - Reads Processing (DADA2 Quality Trimming, Denoising, Paired Reads Merging)
9.Bioinformatics Analysis - Reads Taxonomy Assignment
10.Bioinformatics Analysis - Alpha Diversity Analysis
11.Bioinformatics Analysis - Beta Diversity Analysis
12.Bioinformatics Analysis - Differential Abundance Analysis
13.Bioinformatics Analysis - Heatmap Profile
14.Bioinformatics Analysis - Network Association
 

III. NGS Sequencing

The samples were processed and analyzed with the ZymoBIOMICS® Service: Targeted Metagenomic Sequencing (Zymo Research, Irvine, CA).

DNA Extraction: If DNA extraction was performed, one of three different DNA extraction kits was used depending on the sample type and sample volume and were used according to the manufacturer’s instructions, unless otherwise stated. The kit used in this project is marked below:

ZymoBIOMICS® DNA Miniprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS® DNA Microprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS®-96 MagBead DNA Kit (Zymo Research, Irvine, CA)
N/A (DNA Extraction Not Performed)
Elution Volume: 50µL
Additional Notes: NA

Targeted Library Preparation: The DNA samples were prepared for targeted sequencing with the Quick-16S™ NGS Library Prep Kit (Zymo Research, Irvine, CA). These primers were custom designed by Zymo Research to provide the best coverage of the 16S gene while maintaining high sensitivity. The primer sets used in this project are marked below:

Quick-16S™ Primer Set V1-V2 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V1-V3 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V3-V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V6-V8 (Zymo Research, Irvine, CA)
Other: NA
Additional Notes: NA

The sequencing library was prepared using an innovative library preparation process in which PCR reactions were performed in real-time PCR machines to control cycles and therefore limit PCR chimera formation. The final PCR products were quantified with qPCR fluorescence readings and pooled together based on equal molarity. The final pooled library was cleaned up with the Select-a-Size DNA Clean & Concentrator™ (Zymo Research, Irvine, CA), then quantified with TapeStation® (Agilent Technologies, Santa Clara, CA) and Qubit® (Thermo Fisher Scientific, Waltham, WA).

Control Samples: The ZymoBIOMICS® Microbial Community Standard (Zymo Research, Irvine, CA) was used as a positive control for each DNA extraction, if performed. The ZymoBIOMICS® Microbial Community DNA Standard (Zymo Research, Irvine, CA) was used as a positive control for each targeted library preparation. Negative controls (i.e. blank extraction control, blank library preparation control) were included to assess the level of bioburden carried by the wet-lab process.

Sequencing: The final library was sequenced on Illumina® MiSeq™ with a V3 reagent kit (600 cycles). The sequencing was performed with 10% PhiX spike-in.

Absolute Abundance Quantification*: A quantitative real-time PCR was set up with a standard curve. The standard curve was made with plasmid DNA containing one copy of the 16S gene and one copy of the fungal ITS2 region prepared in 10-fold serial dilutions. The primers used were the same as those used in Targeted Library Preparation. The equation generated by the plasmid DNA standard curve was used to calculate the number of gene copies in the reaction for each sample. The PCR input volume (2 µl) was used to calculate the number of gene copies per microliter in each DNA sample.
The number of genome copies per microliter DNA sample was calculated by dividing the gene copy number by an assumed number of gene copies per genome. The value used for 16S copies per genome is 4. The value used for ITS copies per genome is 200. The amount of DNA per microliter DNA sample was calculated using an assumed genome size of 4.64 x 106 bp, the genome size of Escherichia coli, for 16S samples, or an assumed genome size of 1.20 x 107 bp, the genome size of Saccharomyces cerevisiae, for ITS samples. This calculation is shown below:

Calculated Total DNA = Calculated Total Genome Copies × Assumed Genome Size (4.64 × 106 bp) ×
Average Molecular Weight of a DNA bp (660 g/mole/bp) ÷ Avogadro’s Number (6.022 x 1023/mole)


* Absolute Abundance Quantification is only available for 16S and ITS analyses.

The absolute abundance standard curve data can be viewed in Excel here:

The absolute abundance standard curve is shown below:

Absolute Abundance Standard Curve

 

IV. Complete Report Download

The complete report of your project, including all links in this report, can be downloaded by clicking the link provided below. The downloaded file is a compressed ZIP file and once unzipped, open the file “REPORT.html” (may only shown as "REPORT" in your computer) by double clicking it. Your default web browser will open it and you will see the exact content of this report.

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Complete report download link:

To view the report, please follow the following steps:
1.Download the .zip file from the report link above.
2.Extract all the contents of the downloaded .zip file to your desktop.
3.Open the extracted folder and find the "REPORT.html" (may shown as only "REPORT").
4.Open (double-clicking) the REPORT.html file. Your default browser will open the top age of the complete report. Within the report, there are links to view all the analyses performed for the project.

 

V. Raw Sequence Data Download

The raw NGS sequence data is available for download with the link provided below. The data is a compressed ZIP file and can be unzipped to individual sequence files. Since this is a pair-end sequencing, each of your samples is represented by two sequence files, one for READ 1, with the file extension “*_R1.fastq.gz”, another READ 2, with the file extension “*_R1.fastq.gz”. The files are in FASTQ format and are compressed. FASTQ format is a text-based data format for storing both a biological sequence and its corresponding quality scores. Most sequence analysis software will be able to open them. The Sample IDs associated with the R1 and R2 fastq files are listed in the table below:

Sample IDOriginal Sample IDRead 1 File NameRead 2 File Name
F16728.S10original sample ID herezr16728_10V1V3_R1.fastq.gzzr16728_10V1V3_R2.fastq.gz
F16728.S11original sample ID herezr16728_11V1V3_R1.fastq.gzzr16728_11V1V3_R2.fastq.gz
F16728.S12original sample ID herezr16728_12V1V3_R1.fastq.gzzr16728_12V1V3_R2.fastq.gz
F16728.S13original sample ID herezr16728_13V1V3_R1.fastq.gzzr16728_13V1V3_R2.fastq.gz
F16728.S14original sample ID herezr16728_14V1V3_R1.fastq.gzzr16728_14V1V3_R2.fastq.gz
F16728.S15original sample ID herezr16728_15V1V3_R1.fastq.gzzr16728_15V1V3_R2.fastq.gz
F16728.S16original sample ID herezr16728_16V1V3_R1.fastq.gzzr16728_16V1V3_R2.fastq.gz
F16728.S17original sample ID herezr16728_17V1V3_R1.fastq.gzzr16728_17V1V3_R2.fastq.gz
F16728.S18original sample ID herezr16728_18V1V3_R1.fastq.gzzr16728_18V1V3_R2.fastq.gz
F16728.S19original sample ID herezr16728_19V1V3_R1.fastq.gzzr16728_19V1V3_R2.fastq.gz
F16728.S01original sample ID herezr16728_1V1V3_R1.fastq.gzzr16728_1V1V3_R2.fastq.gz
F16728.S20original sample ID herezr16728_20V1V3_R1.fastq.gzzr16728_20V1V3_R2.fastq.gz
F16728.S21original sample ID herezr16728_21V1V3_R1.fastq.gzzr16728_21V1V3_R2.fastq.gz
F16728.S22original sample ID herezr16728_22V1V3_R1.fastq.gzzr16728_22V1V3_R2.fastq.gz
F16728.S23original sample ID herezr16728_23V1V3_R1.fastq.gzzr16728_23V1V3_R2.fastq.gz
F16728.S24original sample ID herezr16728_24V1V3_R1.fastq.gzzr16728_24V1V3_R2.fastq.gz
F16728.S25original sample ID herezr16728_25V1V3_R1.fastq.gzzr16728_25V1V3_R2.fastq.gz
F16728.S02original sample ID herezr16728_2V1V3_R1.fastq.gzzr16728_2V1V3_R2.fastq.gz
F16728.S03original sample ID herezr16728_3V1V3_R1.fastq.gzzr16728_3V1V3_R2.fastq.gz
F16728.S04original sample ID herezr16728_4V1V3_R1.fastq.gzzr16728_4V1V3_R2.fastq.gz
F16728.S05original sample ID herezr16728_5V1V3_R1.fastq.gzzr16728_5V1V3_R2.fastq.gz
F16728.S06original sample ID herezr16728_6V1V3_R1.fastq.gzzr16728_6V1V3_R2.fastq.gz
F16728.S07original sample ID herezr16728_7V1V3_R1.fastq.gzzr16728_7V1V3_R2.fastq.gz
F16728.S08original sample ID herezr16728_8V1V3_R1.fastq.gzzr16728_8V1V3_R2.fastq.gz
F16728.S09original sample ID herezr16728_9V1V3_R1.fastq.gzzr16728_9V1V3_R2.fastq.gz

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Raw sequence data download link:

 

VI. Analysis - DADA2 Read Processing

What is DADA2?

DADA2 is a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. DADA2 identified more real variants and output fewer spurious sequences than other methods.

DADA2’s advantage is that it uses more of the data. The DADA2 error model incorporates quality information, which is ignored by all other methods after filtering. The DADA2 error model incorporates quantitative abundances, whereas most other methods use abundance ranks if they use abundance at all. The DADA2 error model identifies the differences between sequences, eg. A->C, whereas other methods merely count the mismatches. DADA2 can parameterize its error model from the data itself, rather than relying on previous datasets that may or may not reflect the PCR and sequencing protocols used in your study.

DADA2 Publication: Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016 Jul;13(7):581-3. doi: 10.1038/nmeth.3869. Epub 2016 May 23. PMID: 27214047; PMCID: PMC4927377.

DADA2 Software Package is available as an R package at : https://benjjneb.github.io/dada2/index.html

Analysis Procedures:

DADA2 pipeline includes several tools for read quality control, including quality filtering, trimming, denoising, pair merging and chimera filtering. Below are the major processing steps of DADA2:

Step 1. Read trimming based on sequence quality The quality of NGS Illumina sequences often decreases toward the end of the reads. DADA2 allows to trim off the poor quality read ends in order to improve the error model building and pair mergicing performance.

Step 2. Learn the Error Rates The DADA2 algorithm makes use of a parametric error model (err) and every amplicon dataset has a different set of error rates. The learnErrors method learns this error model from the data, by alternating estimation of the error rates and inference of sample composition until they converge on a jointly consistent solution. As in many machine-learning problems, the algorithm must begin with an initial guess, for which the maximum possible error rates in this data are used (the error rates if only the most abundant sequence is correct and all the rest are errors).

Step 3. Infer amplicon sequence variants (ASVs) based on the error model built in previous step. This step is also called sequence "denoising". The outcome of this step is a list of ASVs that are the equivalent of oligonucleotides.

Step 4. Merge paired reads. If the sequencing products are read pairs, DADA2 will merge the R1 and R2 ASVs into single sequences. Merging is performed by aligning the denoised forward reads with the reverse-complement of the corresponding denoised reverse reads, and then constructing the merged “contig” sequences. By default, merged sequences are only output if the forward and reverse reads overlap by at least 12 bases, and are identical to each other in the overlap region (but these conditions can be changed via function arguments).

Step 5. Remove chimera. The core dada method corrects substitution and indel errors, but chimeras remain. Fortunately, the accuracy of sequence variants after denoising makes identifying chimeric ASVs simpler than when dealing with fuzzy OTUs. Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a right-segment from two more abundant “parent” sequences. The frequency of chimeric sequences varies substantially from dataset to dataset, and depends on on factors including experimental procedures and sample complexity.

Results

1. Read Quality Plots NGS sequence analaysis starts with visualizing the quality of the sequencing. Below are the quality plots of the first sample for the R1 and R2 reads separately. In gray-scale is a heat map of the frequency of each quality score at each base position. The mean quality score at each position is shown by the green line, and the quartiles of the quality score distribution by the orange lines. The forward reads are usually of better quality. It is a common practice to trim the last few nucleotides to avoid less well-controlled errors that can arise there. The trimming affects the downstream steps including error model building, merging and chimera calling. FOMC uses an empirical approach to test many combinations of different trim length in order to achieve best final amplicon sequence variants (ASVs), see the next section “Optimal trim length for ASVs”.

Quality plots for all samples:

2. Optimal trim length for ASVs The final number of merged and chimera-filtered ASVs depends on the quality filtering (hence trimming) in the very beginning of the DADA2 pipeline. In order to achieve highest number of ASVs, an empirical approach was used -

  1. Create a random subset of each sample consisting of 5,000 R1 and 5,000 R2 (to reduce computation time)
  2. Trim 10 bases at a time from the ends of both R1 and R2 up to 50 bases
  3. For each combination of trimmed length (e.g., 300x300, 300x290, 290x290 etc), the trimmed reads are subject to the entire DADA2 pipeline for chimera-filtered merged ASVs
  4. The combination with highest percentage of the input reads becoming final ASVs is selected for the complete set of data

Below is the result of such operation, showing ASV percentages of total reads for all trimming combinations (1st Column = R1 lengths in bases; 1st Row = R2 lengths in bases):

R1/R2281271261251241231
32168.26%68.60%68.46%68.82%70.06%64.68%
31168.23%68.57%68.43%67.92%64.52%26.72%
30168.22%68.57%67.56%62.55%26.53%18.75%
29168.27%67.73%62.25%25.77%18.46%14.95%
28167.43%62.44%25.82%17.98%14.84%0.93%
27162.01%25.98%18.00%14.33%0.90%0.34%

Based on the above result, the trim length combination of R1 = 321 bases and R2 = 241 bases (highlighted red above), was chosen for generating final ASVs for all sequences. This combination generated highest number of merged non-chimeric ASVs and was used for downstream analyses, if requested.

3. Error plots from learning the error rates After DADA2 building the error model for the set of data, it is always worthwhile, as a sanity check if nothing else, to visualize the estimated error rates. The error rates for each possible transition (A→C, A→G, …) are shown below. Points are the observed error rates for each consensus quality score. The black line shows the estimated error rates after convergence of the machine-learning algorithm. The red line shows the error rates expected under the nominal definition of the Q-score. The ideal result would be the estimated error rates (black line) are a good fit to the observed rates (points), and the error rates drop with increased quality as expected.

Forward Read R1 Error Plot


Reverse Read R2 Error Plot

The PDF version of these plots are available here:

 

4. DADA2 Result Summary The table below shows the summary of the DADA2 analysis, tracking paired read counts of each samples for all the steps during DADA2 denoising process - including end-trimming (filtered), denoising (denoisedF, denoisedF), pair merging (merged) and chimera removal (nonchim).

Sample IDF16728.S01F16728.S02F16728.S03F16728.S04F16728.S05F16728.S06F16728.S07F16728.S08F16728.S09F16728.S10F16728.S11F16728.S12F16728.S13F16728.S14F16728.S15F16728.S16F16728.S17F16728.S18F16728.S19F16728.S20F16728.S21F16728.S22F16728.S23F16728.S24F16728.S25Row SumPercentage
input276,517257,700233,672113,369271,905254,246284,289238,671244,924239,200236,420196,424269,122257,909228,14496,827294,527271,174232,641152,848242,944275,949126,321321,333256,8855,873,961100.00%
filtered243,522226,860205,33975,749238,887223,734249,973209,512215,479210,200208,463172,639236,981226,863200,05564,109259,047239,099204,843101,693213,376243,20584,249282,974226,2155,063,06686.20%
denoisedF242,467225,944204,33274,951237,356222,628249,150208,408214,623209,652207,708171,570235,895225,901199,39463,711257,880238,369203,868100,871212,441241,98683,611281,532225,2375,039,48585.79%
denoisedR240,598224,487202,91674,155235,151220,520247,070206,341212,874207,825206,082170,413233,759223,942197,58762,925255,995236,369202,33999,730210,529240,07382,826279,467223,0764,997,04985.07%
merged234,875219,898198,71570,433227,199215,109241,069189,187207,728204,244201,755165,652227,986219,437193,84558,102249,982230,707197,52894,164204,500226,96478,268273,214170,0324,800,59381.73%
nonchim201,188184,202172,47156,229194,878184,390213,696168,395170,883170,409167,509142,549185,522185,933159,03244,945225,245193,559172,84174,495184,690184,47056,725246,901151,5494,092,70669.68%

This table can be downloaded as an Excel table below:

 

5. DADA2 Amplicon Sequence Variants (ASVs). A total of 2592 unique merged and chimera-free ASV sequences were identified, and their corresponding read counts for each sample are available in the "ASV Read Count Table" with rows for the ASV sequences and columns for sample. This read count table can be used for microbial profile comparison among different samples and the sequences provided in the table can be used to taxonomy assignment.

 

The table can be downloaded from this link:

 
 

Sample Meta Information

Download Sample Meta Information
#SampleIDPatient IDGender1GenderPeriodontitisNo. of TeethProsthesis TimeGroup
F16728.S01Patient003.SFemaleFemaleGeneralized periodontitis I-III AB< 10 teethProsthesis > 1 year Peri-implant I-III AB Saliva
F16728.S02Patient004.SMaleMaleGeneralized periodontitis IV C≥ 10 teethProsthesis > 1 year Peri-implant IV C Saliva
F16728.S03Patient005.SMaleMaleLocalized Periodontitis≥ 10 teethProsthesis > 1 year Peri-implant II-IV BC Saliva
F16728.S04Patient006.SMaleMaleGeneralized periodontitis IV C≥ 10 teethProsthesis > 1 year Peri-implant IV C Saliva
F16728.S05Patient007.SFemaleFemaleGeneralized periodontitis IV C< 10 teethProsthesis > 1 year Peri-implant IV C Saliva
F16728.S06Patient008.SFemaleFemaleReduced periodontium< 10 teethProsthesis > 1 year Peri-implant Saliva
F16728.S07Patient009.SMaleMaleGeneralized periodontitis IV C≥ 10 teethProsthesis > 1 year Peri-implant IV C Saliva
F16728.S08Patient010.SMaleMaleGeneralized periodontitis IV C≥ 10 teethProsthesis < 1 year Peri-implant IV C Saliva
F16728.S09Patient011.SFemaleFemaleGeneralized periodontitis I-III AB< 10 teethProsthesis > 1 year Peri-implant I-III AB Saliva
F16728.S10Patient012.SMaleMaleGeneralized periodontitis I-III AB< 10 teethProsthesis > 1 year Peri-implant I-III AB Saliva
F16728.S11Patient013.SMaleMaleLocalized Periodontitis≥ 10 teethProsthesis > 1 year Peri-implant II-IV BC Saliva
F16728.S12Patient014.SMaleMaleGeneralized periodontitis IV C≥ 10 teethProsthesis > 1 year Peri-implant IV C Saliva
F16728.S13Patient015.SFemaleFemaleGeneralized periodontitis IV C< 10 teethProsthesis > 1 year Peri-implant IV C Saliva
F16728.S14Patient016.SFemaleFemaleLocalized Periodontitis≥ 10 teethProsthesis < 1 year Peri-implant II-IV BC Saliva
F16728.S15Patient017.SMaleMaleReduced periodontium< 10 teethProsthesis > 1 year Peri-implant Saliva
F16728.S16Patient018.SFemale Female Generalized periodontitis I-III AB< 10 teethProsthesis < 1 year Peri-implant I-III AB Saliva
F16728.S17Patient020.SMaleMaleGeneralized periodontitis I-III AB≥ 10 teethProsthesis < 1 year Peri-implant I-III AB Saliva
F16728.S18Patient021.SFemaleFemaleReduced periodontium≥ 10 teethProsthesis > 1 year Peri-implant Saliva
F16728.S19Patient022.SMaleMaleGeneralized periodontitis I-III AB≥ 10 teethProsthesis < 1 year Peri-implant I-III AB Saliva
F16728.S20Patient023.SMaleMaleReduced periodontium≥ 10 teethProsthesis < 1 year Peri-implant Saliva
F16728.S21Patient024.SFemaleFemaleGeneralized periodontitis IV C≥ 10 teethProsthesis < 1 year Peri-implant IV C Saliva
F16728.S22Patient025.SFemaleFemaleGeneralized periodontitis IV C< 10 teethProsthesis < 1 year Peri-implant IV C Saliva
F16728.S23Patient026.SMaleMaleLocalized Periodontitis≥ 10 teethProsthesis < 1 year Peri-implant II-IV BC Saliva
F16728.S24Patient027.SFemaleFemaleGeneralized periodontitis I-III AB< 10 teethProsthesis > 1 year Peri-implant I-III AB Saliva
F16728.S25Patient028.SFemaleFemaleGeneralized periodontitis IV C< 10 teethProsthesis > 1 year Peri-implant IV C Saliva
F5451.S01Patient003.Pla22FemaleNANANANAPeri-implant I-III AB Plaque
F5451.S02Patient003.Pla27FemaleNANANANAPeri-implant I-III AB Plaque
F5451.S03Patient004.Pla22MaleNANANANAPeri-implant IV C Plaque
F5451.S04Patient004.Pla27MaleNANANANAPeri-implant IV C Plaque
F5451.S05Patient005.Pla22MaleNANANANAPeri-implant II-IV BC Plaque
F5451.S06Patient005.Pla27MaleNANANANAPeri-implant II-IV BC Plaque
F5451.S07Patient006.Pla22MaleNANANANAPeri-implant IV C Plaque
F5451.S08Patient006.Pla27MaleNANANANAPeri-implant IV C Plaque
F5451.S09Patient007.Pla22FemaleNANANANAPeri-implant IV C Plaque
F5451.S10Patient007.Pla27FemaleNANANANAPeri-implant IV C Plaque
F5451.S11Patient008.Pla22FemaleNANANANAPeri-implant Plaque
F5451.S12Patient008.Pla27FemaleNANANANAPeri-implant Plaque
F5451.S13Patient009.Pla22MaleNANANANAPeri-implant IV C Plaque
F5451.S14Patient009.Pla27MaleNANANANAPeri-implant IV C Plaque
F5451.S15Patient010.Pla22MaleNANANANAPeri-implant IV C Plaque
F5451.S16Patient010.Pla27MaleNANANANAPeri-implant IV C Plaque
F5451.S17Patient011.Pla22FemaleNANANANAPeri-implant I-III AB Plaque
F5451.S18Patient011.Pla27FemaleNANANANAPeri-implant I-III AB Plaque
F5451.S19Patient012.Pla22MaleNANANANAPeri-implant I-III AB Plaque
F5451.S20Patient012.Pla27MaleNANANANAPeri-implant I-III AB Plaque
F5451.S21Patient013.Pla22MaleNANANANAPeri-implant II-IV BC Plaque
F5451.S22Patient013.Pla27MaleNANANANAPeri-implant II-IV BC Plaque
F5451.S23Patient014.Pla22MaleNANANANAPeri-implant IV C Plaque
F5451.S24Patient014.Pla27MaleNANANANAPeri-implant IV C Plaque
F5451.S25Patient015.Pla22FemaleNANANANAPeri-implant IV C Plaque
F5451.S26Patient015.Pla27FemaleNANANANAPeri-implant IV C Plaque
F5451.S27Patient016.Pla22FemaleNANANANAPeri-implant II-IV BC Plaque
F5451.S28Patient016.Pla27FemaleNANANANAPeri-implant II-IV BC Plaque
F5451.S29Patient017.Pla22MaleNANANANAPeri-implant Plaque
F5451.S30Patient017.Pla27MaleNANANANAPeri-implant Plaque
F8254.S01Patient018.Pla22FemaleNANANANAPeri-implant I-III AB Plaque
F8254.S02Patient018.Pla27FemaleNANANANAPeri-implant I-III AB Plaque
F8254.S03Patient020.Pla22MaleNANANANAPeri-implant I-III AB Plaque
F8254.S04Patient020.Pla27MaleNANANANAPeri-implant I-III AB Plaque
F8254.S05Patient021.Pla22FemaleNANANANAPeri-implant Plaque
F8254.S06Patient021.Pla27FemaleNANANANAPeri-implant Plaque
F8254.S07Patient022.Pla22MaleNANANANAPeri-implant I-III AB Plaque
F8254.S08Patient022.Pla27MaleNANANANAPeri-implant I-III AB Plaque
F8254.S09Patient023.Pla22MaleNANANANAPeri-implant Plaque
F8254.S10Patient023.Pla27MaleNANANANAPeri-implant Plaque
F8254.S11Patient024.Pla22FemaleNANANANAPeri-implant IV C Plaque
F8254.S12Patient024.Pla27FemaleNANANANAPeri-implant IV C Plaque
F8254.S13Patient025.Pla22FemaleNANANANAPeri-implant IV C Plaque
F8254.S14Patient025.Pla27FemaleNANANANAPeri-implant IV C Plaque
F8254.S15Patient026.Pla22MaleNANANANAPeri-implant II-IV BC Plaque
F8254.S16Patient026.Pla27MaleNANANANAPeri-implant II-IV BC Plaque
F8254.S17Patient027.Pla22FemaleNANANANAPeri-implant I-III AB Plaque
F8254.S18Patient027.Pla27FemaleNANANANAPeri-implant I-III AB Plaque
F8254.S19Patient028.Pla22FemaleNANANANAPeri-implant IV C Plaque
F8254.S20Patient028.Pla27FemaleNANANANAPeri-implant IV C Plaque
 
 

ASV Read Counts by Samples

#Sample IDRead Count
F5451.S239,945
F5451.S1610,310
F5451.S2910,509
F5451.S2710,739
F5451.S2211,075
F5451.S1511,419
F5451.S2112,072
F5451.S3012,157
F8254.S0713,421
F5451.S1813,584
F8254.S0513,878
F5451.S1714,750
F5451.S2614,790
F5451.S2014,807
F5451.S2515,819
F5451.S2817,467
F5451.S1919,298
F5451.S1319,901
F8254.S0620,294
F5451.S0820,540
F5451.S1421,019
F5451.S0321,059
F5451.S2421,280
F5451.S1121,738
F8254.S1321,785
F8254.S0821,866
F8254.S1722,118
F5451.S0122,375
F8254.S1422,514
F5451.S0423,182
F8254.S1623,447
F5451.S0623,518
F8254.S0124,205
F5451.S0524,408
F8254.S1524,619
F8254.S0225,203
F8254.S1825,794
F8254.S1025,995
F5451.S0226,060
F8254.S1226,093
F5451.S0726,279
F8254.S0927,053
F8254.S2028,183
F8254.S1928,428
F8254.S1129,040
F8254.S0329,322
F5451.S1237,207
F5451.S0939,325
F16728.S1642,440
F5451.S1042,816
F8254.S0442,866
F16728.S0449,895
F16728.S2356,263
F16728.S2069,380
F16728.S12132,078
F16728.S15149,556
F16728.S25149,605
F16728.S19158,277
F16728.S08159,323
F16728.S09161,267
F16728.S11165,034
F16728.S14165,603
F16728.S10169,064
F16728.S05170,091
F16728.S03170,757
F16728.S06175,346
F16728.S22177,114
F16728.S02177,648
F16728.S21179,633
F16728.S13180,671
F16728.S01180,716
F16728.S18189,874
F16728.S07202,854
F16728.S17217,803
F16728.S24230,938
 
 
 

VII. Analysis - Read Taxonomy Assignment

Read Taxonomy Assignment - Methods

 

The species-level, open-reference 16S rRNA NGS reads taxonomy assignment pipeline

Version 20210310
 

1. Raw sequences reads in FASTA format were BLASTN-searched against a combined set of 16S rRNA reference sequences. It consists of MOMD (version 0.1), the HOMD (version 15.2 http://www.homd.org/index.php?name=seqDownload&file&type=R ), HOMD 16S rRNA RefSeq Extended Version 1.1 (EXT), GreenGene Gold (GG) (http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/gold_strains_gg16S_aligned.fasta.gz) , and the NCBI 16S rRNA reference sequence set (https://ftp.ncbi.nlm.nih.gov/blast/db/16S_ribosomal_RNA.tar.gz). These sequences were screened and combined to remove short sequences (<1000nt), chimera, duplicated and sub-sequences, as well as sequences with poor taxonomy annotation (e.g., without species information). This process resulted in 1,015 from HOMD V15.22, 495 from EXT, 3,940 from GG and 18,044 from NCBI, a total of 25,120 sequences. Altogether these sequence represent a total of 15,601 oral and non-oral microbial species.

The NCBI BLASTN version 2.7.1+ (Zhang et al, 2000) was used with the default parameters. Reads with ≥ 98% sequence identity to the matched reference and ≥ 90% alignment length (i.e., ≥ 90% of the read length that was aligned to the reference and was used to calculate the sequence percent identity) were classified based on the taxonomy of the reference sequence with highest sequence identity. If a read matched with reference sequences representing more than one species with equal percent identity and alignment length, it was subject to chimera checking with USEARCH program version v8.1.1861 (Edgar 2010). Non-chimeric reads with multi-species best hits were considered valid and were assigned with a unique species notation (e.g., spp) denoting unresolvable multiple species.

2. Unassigned reads (i.e., reads with < 98% identity or < 90% alignment length) were pooled together and reads < 200 bases were removed. The remaining reads were subject to the de novo operational taxonomy unit (OTU) calling and chimera checking using the USEARCH program version v8.1.1861 (Edgar 2010). The de novo OTU calling and chimera checking was done using 98% as the sequence identity cutoff, i.e., the species-level OTU. The output of this step produced species-level de novo clustered OTUs with 98% identity. Representative reads from each of the OTUs/species were then BLASTN-searched against the same reference sequence set again to determine the closest species for these potential novel species. These potential novel species were pooled together with the reads that were signed to specie-level in the previous step, for down-stream analyses.

Reference:
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12. PubMed PMID: 20709691.

3. Designations used in the taxonomy:

	1) Taxonomy levels are indicated by these prefixes:
	
	   k__: domain/kingdom
	   p__: phylum
	   c__: class
	   o__: order
	   f__: family
	   g__: genus  
	   s__: species
	
	   Example: 
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__faecis
		
	2) Unique level identified – known species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__hominis
	
	   The above example shows some reads match to a single species (all levels are unique)
	
	3) Non-unique level identified – known species:

	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__multispecies_spp123_3
	   
	   The above example “s__multispecies_spp123_3” indicates certain reads equally match to 3 species of the 
	   genus Roseburia; the “spp123” is a temporally assigned species ID.
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__multigenus;s__multispecies_spp234_5
	   
	   The above example indicates certain reads match equally to 5 different species, which belong to multiple genera.; 
	   the “spp234” is a temporally assigned species ID.
	
	4) Unique level identified – unknown species, potential novel species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ hominis_nov_97%
	   
	   The above example indicates that some reads have no match to any of the reference sequences with 
	   sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. However this groups 
	   of reads (actually the representative read from a de novo  OTU) has 96% percent identity to 
	   Roseburia hominis, thus this is a potential novel species, closest to Roseburia hominis. 
	   (But they are not the same species).
	
	5) Multiple level identified – unknown species, potential novel species:
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ multispecies_sppn123_3_nov_96%
	
	   The above example indicates that some reads have no match to any of the reference sequences 
	   with sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. 
	   However this groups of reads (actually the representative read from a de novo  OTU) 
	   has 96% percent identity equally to 3 species in Roseburia. Thus this is no single 
	   closest species, instead this group of reads match equally to multiple species at 96%. 
	   Since they have passed chimera check so they represent a novel species. “sppn123” is a 
	   temporary ID for this potential novel species. 

 
4. The taxonomy assignment algorithm is illustrated in this flow char below:
 
 
 
 

Read Taxonomy Assignment - Result Summary *

CodeCategoryMPC=0% (>=1 read)MPC=0.01%(>=496 reads)
ATotal reads4,966,8024,966,802
BTotal assigned reads4,963,4134,963,413
CAssigned reads in species with read count < MPC028,434
DAssigned reads in samples with read count < 50000
ETotal samples7575
FSamples with reads >= 5007575
GSamples with reads < 50000
HTotal assigned reads used for analysis (B-C-D)4,963,4134,934,979
IReads assigned to single species4,630,6274,610,979
JReads assigned to multiple species271,625269,520
KReads assigned to novel species61,16154,480
LTotal number of species634177
MNumber of single species377156
NNumber of multi-species3714
ONumber of novel species2207
PTotal unassigned reads3,3893,389
QChimeric reads3030
RReads without BLASTN hits661661
SOthers: short, low quality, singletons, etc.2,6982,698
A=B+P=C+D+H+Q+R+S
E=F+G
B=C+D+H
H=I+J+K
L=M+N+O
P=Q+R+S
* MPC = Minimal percent (of all assigned reads) read count per species, species with read count < MPC were removed.
* Samples with reads < 500 were removed from downstream analyses.
* The assignment result from MPC=0.1% was used in the downstream analyses.
 
 
 

Read Taxonomy Assignment - ASV Species-Level Read Counts Table

This table shows the read counts for each sample (columns) and each species identified based on the ASV sequences. The downstream analyses were based on this table.
SPIDTaxonomyF16728.S01F16728.S02F16728.S03F16728.S04F16728.S05F16728.S06F16728.S07F16728.S08F16728.S09F16728.S10F16728.S11F16728.S12F16728.S13F16728.S14F16728.S15F16728.S16F16728.S17F16728.S18F16728.S19F16728.S20F16728.S21F16728.S22F16728.S23F16728.S24F16728.S25F5451.S01F5451.S02F5451.S03F5451.S04F5451.S05F5451.S06F5451.S07F5451.S08F5451.S09F5451.S10F5451.S11F5451.S12F5451.S13F5451.S14F5451.S15F5451.S16F5451.S17F5451.S18F5451.S19F5451.S20F5451.S21F5451.S22F5451.S23F5451.S24F5451.S25F5451.S26F5451.S27F5451.S28F5451.S29F5451.S30F8254.S01F8254.S02F8254.S03F8254.S04F8254.S05F8254.S06F8254.S07F8254.S08F8254.S09F8254.S10F8254.S11F8254.S12F8254.S13F8254.S14F8254.S15F8254.S16F8254.S17F8254.S18F8254.S19F8254.S20
SP1Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Megasphaera;micronuciformis952631329991355608300076910821734951008109025173705776612432480000000000000000000000000000000000000000039000000
SP10Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;parainfluenzae38846220187350333461651114215402903930035971635201722328612668159102429712005800013528850806498160830001270000000018014900004319410661910021261928463448490000032370836
SP100Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;oris0559008300000000000002800000000013800000000000000000000000000000000538317000000000000
SP102Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT30913086000000001620000000000000961170050176000000000000000018000000000000000000000000000
SP104Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;jejuni209004822435000022800000008000000132000000000000000000000000000000000000000000000000970
SP106Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis_subsp._tigurinus_clade_070000014500002720000000700250143401404000000000103500000000237654000000000040000414423004733487003203222100347118900
SP107Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Stomatobaculum;sp. HMT097035012743212000002923920000038700000000000000000000000000000000000000000000000000000000
SP109Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Lancefieldella;parvula145942515051146139534527994444341115233199373854052566402152111795249165312724443117002920200000000047178600000019000154000000027960003001668708900000
SP110Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Parascardovia;denticolens00002300000123000190000000000000000000000000000000072541619261200000000017000000000000000
SP111Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT136008617131150000208123630000001300900000000000000000000000000000000000000000000000885400
SP112Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;orale77757379111832979817065500361246130139901613013300000137818702900816251000000000218500000000000000000059108014000000000000
SP113Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;pasteri200341241250000001780002456043350415274000000000000000000000000000000210000000000004627700000000
SP114Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT1750109000000000000000000000013000345002321620000000000000000000000000000000000000000181726740
SP115Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;australis94280075655000000000000200200250000000000000000000000000000060000000000231670026000000000
SP116Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Stomatobaculum;longum6254439336693100143400621573010910354300130506011299129705006333890000000013415710000007360001700000000000762400967048100000
SP118Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;infantis_clade_43113432190217347812934176003090495336003270153362203617106900000000000055168300000000000000000000000192400000000000
SP119Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Catonella;morbi176001835900001119131000002504700002600000007175820000000000000000000000000000000000000000
SP12Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;anginosus0000770001160400000440009100018110000000000225125800000055130000000122000640000014923697000000089138387320000
SP125Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oris00001250090040504300000001500000000000268704000000000000000000227000000000000000000000
SP127Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._vincentii0000219000000000000000000000000000057700000000000000000000000000000000000000000
SP13Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;concisus167196295318350261035907234157772690012281083490529219013578947826071227111000313858003413010000406749022000000000016209110032140000
SP130Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT0570007078583160744000220232900000000000000000000000000000000000000000000000000000000000000
SP131Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT06407902405497001610311112023032504041000000002615000014958840300236251230000043009853670033882002800010549210000000000000000
SP136Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT423829500000022092049071012490007712336388018505910526852083486157270000660000047600262598600000017415313721218409128001659109248624660577610300029219540370
SP137Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis154288304525883651104220112129719000003631755410002653093973396600262618010000000000009800084022500470000000306020792621871852010000000
SP139Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT061000000000000316800000000000000000000000000000000000001084680000000000000000000000
SP14Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;salivarius25148988721000331320111900234980465622846461814535463200245423499677862927783546769521414497374101134615380504534659962005853489698307090207200001036013408445478448513574047955960403006212477030033310502033337915678053243414760012930
SP141Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;nanceiensis300365196000000022000005633842850012040894600000500000000000000000000000000000000102600000000
SP142Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus;acidophilus000000000001700800000000015930000000000000000000000037000000000000000000000000000
SP144Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-2];bacterium HMT09600000670000407518000000000000000000000000000000000000000000000000000000000000000
SP149Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT0560000000000000000000002000000000000000000000000013400000000857222000000000005000000
SP151Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;gingivalis00168003210128001531297100016401190289006051000000000000000415000000000000000000000000188800000000
SP152Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Microbacteriaceae;Microbacterium;hydrothermale00000000000000000000000000000380000000000000059000000000000708170700002398002600000000
SP153Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT2150001364641026000002215761008801480162608450377458000084330080414800000000000000018536600000000000044800000011100
SP160Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT35215870286128898216218700061621419900004304042600000000000000000000000000000000000000000002627033000000
SP161Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;mitis2300444717016395095311256301151212585913681045901005214224196192864823130142911256028720742479157161399447725188400462686460012202651270000142114700000720477004762111347403430040321180471070190
SP162Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;intermedia000039000000000000000000000000000007120000000000000000000000000000000000000000
SP164Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._animalis820000000000003900000000300258330650000000830000000000021000017800000000000000000016232140000
SP166Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-3];bacterium HMT3518972221022700000089861300003200000000000000000000000000000000000000000000000000000000
SP17Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;graevenitzii25091075838854622735713122871800063533146638830070100081924140185915003291200970024000101304401398500000000000000000000000000000000
SP174Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Johnsonella;sp. HMT1660000000000000000000000000000000008164720000000000000000000000000000000000000000
SP175Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;israelii000052000000000200043000000000000000666222000000000000000000368000002395283600000000000000
SP177Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;breve01710000000000000000000012000007470000000000000000000000000000000000000000000000
SP178Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;socranskii000050000000030000000000000000000457930000000000000000000000000000000000000000
SP179Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sanguinis00990000066070000148026234907705946180114751000026261770000000000029800000000110038300021125866178831900437102000817161170000100759193992
SP18Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;periodonticum58640020720080000358034531447000000006584090000000001150900000000340000000163688000000000000000011450000
SP182Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT30800310161486070171130000610190799102000000000000000000000000000000000000000000002300000000
SP185Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;mutans000000000075000210000000000000000000000000000001772280000000000000000000000000000
SP187Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingobium;yanoikuyae000000000000000000000000000027140000000000000000000018000000101819960000405620000000000
SP19Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT22100001150000006688172746004700002680010780000000000000000000000421428306900000000000000000000000
SP191Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT13701500130000000000000000000000039000140000000000000114000000000000000000000000003470
SP195Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;gordonii5121741003305224000000861301200010100803307102434324411487739360088940402672347367400000000000091129120017166001380002667113000013611230823411253974317
SP2Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;histicola87001671923715691830531917526115013930500327544038480338189100318621752003807000006150000000076736737313200001100660000000028358500000001720000014
SP20Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;downii0001797370000006226001908251889031770000000000190000000000000000000000001596300011000000000000
SP202Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis_subsp._tigurinus_clade_0710000195000000000000000000018000000002132500000000000000000000000000000000000000891334
SP203Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhizobiaceae;Agrobacterium;tumefaciens000000000000000000000000000012000017774605501060035443114000000000000230544000082210000000000
SP206Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT066559749860025516161780000817641814900000697232900068501703106200000000234400000000000000000000003670450000000000
SP207Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;morbillorum00001300000000000000000000000000000475000000000000000000000000000102000000000000
SP208Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT212000017700007000000106800002113000000000047531000000000000000000000000008114100000510167640000
SP21Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;adiacens575611364152709785141375707682101727261174326815283261642436211195174653888603440044855486715886953643605490822135523511414472813894630742705300080114130921123502011612131352520014150014135847309445641231584321634351300
SP211Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminococcaceae_[G-1];bacterium HMT07500003000000035001900000000000000000000000000000000000000061017000000000000000000
SP214Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;sp. HMT204000000000000000000000503000000000000000000000000000000000000000000000189001383621840
SP215Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus;crispatus0000000278821400000000000005400000000000000008923912000000000000000000000000000000000
SP217Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Parvimonas;micra00002900000000120000000028000000000003311393000000540000000000000000000000000000000000
SP22Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;granulosa000080000000000070000000000000002920073000000000000000000001833510000713000000000000
SP225Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT17019500097340014658000530000000000001381120100000000385728400000412320000002661398000000000000000000000000
SP226Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;constellatus0000200050170011000000002060000000000000000000000000000000000000000000000239546490000
SP23Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminococcaceae_[G-2];bacterium HMT0850002311712500000125301790000000700000000000000000000000000000000000000000000000000000
SP232Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Micrococcus;flavus0000000000000000000000000000000000078055014910340633481000000000000000000000000000000
SP234Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-7];[Eubacterium]_yurii_subsps._yurii_&_margaretiae0000000000000000000000000000000001055250000000000000000000000000000000000000000
SP237Bacteria;Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;Cardiobacterium;hominis00006000000000050030010000000000000207000000000000000000002226030000343500000000000316
SP239Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;vestibularis00002330063002661177252000416000531419001720000000000000016990000003019000000000000000000000000000
SP24Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;odontolyticus8265482608133273910981474887877571576037216651156089347236727730326918291011331402805000011358100001453587919970597013670001803500000000064000014000760470000190
SP242Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;dentium0000160000006174080000200800000000000000000000041000000000000000000000000144500000
SP247Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Novosphingobium;silvae0000000000000000000000000009000000011412514440371061901156277000000000000000000000000000000
SP25Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;flava00000000800000000098090004000000000000000007500000000000000000005977000112148600000002801
SP254Bacteria;Actinobacteria;Actinobacteria;Propionibacteriales;Propionibacteriaceae;Arachnia;propionica00004720000000000000000000000000000993513200000000000000000000000000000109290000000000
SP258Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;dentocariosa111900337000352802302091103662202321001210827759911314355100000000000000101834600639659410054176719006743570162353700127320300001813238412501290510254
SP26Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;sp. HMT180652006665900000016586159048133400001074200000000000120000000000003701005302522101504520054115640028275449000000187831750345520000
SP262Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT3170000600000000000000000000000000006125390000000000000000000000000000000000000000
SP266Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;artemidis00006360000000000000001000000000000001755300000000000000000000000000000001800003810
SP271Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;gingivalis00002590000000000000000000000000000534600000000000000000000000000000000000000000
SP274Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT473000000000000001100051900000000000000000000000000000000000000000003000000000000
SP28Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;parasanguinis_clade_41130839785811064186649968410419461969725142264422389982753915520549439086801445021919201252917429418792651245096033725361115420523090011071218283116770595618212022221217317900141443219268001257400000011375975413540000
SP282Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;gracilis360000000300000100000003008034112050000004626320000000800000000000640590002062800000009437009483500
SP289Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;endodontalis00002950040000000000000000000000000043720000000000000000000000000000000000000000
SP29Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;pallens94074162746800004801660000050119000026030000000001989000000000000000000000000000000000000000
SP290Bacteria;Synergistetes;Synergistia;Synergistales;Synergistaceae;Fretibacterium;fastidiosum000000000000000000000000000000000118200000000000000000000000000000000000000000
SP296Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;aeria00002000000000006900230000000000000000000000000000000000002961293400004341000000000000
SP299Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;mucosa000021300000000005600000797000000000000204349000000097500000000000013811413000000000032562000000
SP302Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT0746500013310000679898390720010377124031185715262023000000000107000000000001300000000003300000003514000430000
SP306Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;aerolata000003000000000000000000000000000000000000000000000000000000000007360000000000
SP314Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Propionibacteriaceae;Cutibacterium;acnes0976362200930019111090118243008156314000000000000002500036400000000000000120000000000000000
SP325Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-1];[Eubacterium]_sulci0000349250000611353000004800000000000000000000000000000000000000000000000000000000
SP326Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus;kalixensis050000036240000000000000000000000000000000000000000000000000000000000000000000
SP328Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;longum587226339202220001500000087309900024000251590926379024506600000000000180000000000000000000000000000000000
SP332Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Lautropia;mirabilis00008130000000000006501710700000000000025700000000000000000000105110500002461171004923502800000000
SP34Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcus;stomatis00001310440000001920000041000000000000001013410000000000000000000000000000000000000000
SP350Bacteria;Actinobacteria;Actinomycetia;Propionibacteriales;Propionibacteriaceae;Propionibacterium;acidifaciens0000120000000000000000001071000000000000000000000000000000000000000000000000000
SP353Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;scardovii0006012802012960000000000080000000000000000000020293600000000000000000000000000000000
SP355Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus;ultunensis0000000270000000000000000000000000000000008990000000000000000000000000000000000
SP356Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Alloscardovia;omnicolens3910924653000009103280000002502191000700000007300000000000000000000000000000000000000000000
SP359Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;meyeri00029129202620000194000094400000000000000000000559118000000000000000000000000000000000000
SP37Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;haemolysans223019385600190719610028952401003303991695076511143264722696919512446983160004701314802224500021110000000000001310000087824040398371855801550000980026029
SP372Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Filifactor;alocis000015200000000000000000000000000008296560000000000000000000000000000000000000000
SP38Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;sp. HMT172266600231978761360050055191610130888000000000000000000063000000000000000000000000000000000000000000
SP39Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Paraburkholderia;fungorum00000000000000000000000000000000000000000000000000000000021939100000150000000000
SP392Bacteria;Actinobacteria;Coriobacteriia;Eggerthellales;Eggerthellaceae;Cryptobacterium;curtum0002000037000600000000020011000000000000000000000000000000000000000000001400005810
SP4Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;sp. HMT078000000000000000000000000000000000000000000000000000000000000001600000012274160000
SP40Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Bergeyella;sp. HMT3220044976432472514001179100043901565071260176000001243359145066218339102209272803700000014059450001100001213280081415800032022
SP400Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;peroris0000000000120000000001515398800000000000000000000000000000000000000000000003281870000
SP41Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;showae00001100000000000001600000000000041000000000000000000000000000002960000000004031012040
SP412Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfovibrionaceae;Bilophila;wadsworthia000090000000000000000000000000000209600000000000000000000000000000000000000000
SP416Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;intermedius1017100000000000114000000000001432223210120090000000000000000013300000000000000216197060450000000000
SP42Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT41700246313864542907003493815380000030000230291000042949700000000000000000000000000000000000000345010700012
SP428Bacteria;Bacteroidota;Flavobacteriia;Flavobacteriales;Weeksellaceae;Epilithonimonas;hispanica000000000000000000000000000073190000000000000000000000000006923301000088170700000000
SP43Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;lingnae_[Not_Validly_Published]3205371366891817742833685168914111087721463702031101478819885115678601276734000002820000000000132913300000000000000002246800374400500140000000
SP433Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;flavescens00000000008060900000000000000000000000000000000000000000000000000000000000000
SP439Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Kingella;oralis00002000012000202053601100001121900000000140190000000019195005034570070000002329900222264000000019274530000
SP44Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;sp. HMT0360000103000000000000406000001210000000000800000000000000000000000000000000000000000
SP46Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;salivae157324113020739116301416005941090231077000022381434170072819418013500027000000002070500000000000000000000000002001660040410
SP47Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;parahaemolyticus00001053246000000200004153061600000000000000160355000000000000000000000086886003571304000000000000
SP48Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;gingivalis004038126004000180024766060001120183000017117527330022312944400000209002372000820000389107102600080000019454803629291100
SP49Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;sanguinis189166069342816661017391571438609955479710007374201934817882027282302305024000000000015000000060000200012000000850000001077046000000
SP5Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;atypica21803746117379024081385166253224432926954702031011619139826817693772217221514716133253888719004300751478000000347530304334131000001568797000002140000000000000000000
SP50Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;mucilaginosa3926121800318241658361712215282471977548407697282593416894891057253165843127641442640441031154118016205476310456821372000551045216002130789002939811458400015759546234901052512966909300391071024917611123404391400835695311210131141700000
SP51Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;odontolytica32155420023071815179661500328205000000034311570200086089442283966000006100000000000000019600000132000000006682846546642100111511800
SP52Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Mogibacterium;diversum6205312569108957119000342377302000005211280367063600001900000230000000000000000000000000000000016162000000
SP53Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Moraxellaceae;Moraxella;osloensis00000000000000000000000003401065852350111326910593764603721791265487812623981471894004216001517605954259190000957314318200006186432
SP54Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis_subsp._dentisani_clade_39800000932000000000000000000000000000000000000000000000000000000000000000000000
SP59Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-6];bacterium HMT87001680232226000000291000071060167000000000000000000000000000000000000000000000000000000
SP6Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Kocuria;palustris0000000000000000000000000000000000007900232000293207000000000000000000000000000000
SP60Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT169001000000000003140840491690001988023090000045198713863240000000000064360008542130015924932714525631540860000004101790003286763200
SP63Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT171000029000000000000000010070000000000000000000000000000000000000000000008252430200000
SP64Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;periodonticum160009920852062077000053968210021780147302261117022700000000000097000165147000000000510146319000000000000011700000000
SP65Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;vespertina00090600000033900000000008100000000000000000000000000000000000000000000000000000
SP68Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;wadei260000000000000062000003120004456850000000000000000000000000000315579000000000001336000000
SP69Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Solobacterium;moorei39723370108967160005021448465263000062089414503255500000000013970000000000000000000000000000000000000000
SP7Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Ligilactobacillus;salivarius0125000004511000970259300000039003286000000000000003224760002242002696200000000000000000000000000
SP70Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;sinus06461342484314041116021930052183123229100001653056552395013976000000000000000000000000132900000000000018940000000000
SP71Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;naeslundii0000000000000008000000000000000000000000000001128780000000039113920000014000000000000
SP72Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum2600015213370041000014420524973011122111120348411633000000165158329124218260000032200002301750000359075720810000309612004779541231000509220573053807
SP74Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;chosunense0000138730000000221500000000000000000000233180000000000000000000000000000000000000000
SP78Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sputigena00000100000000000172950501037460000000000004122070000000001131461590000002531033000013490068759001311030021230
SP8Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;leadbetteri000001109000000000000500000150000000000061679700000000000000000000000005900000000209816600
SP80Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriaceae;Pseudoramibacter;alactolyticus000000000000030000000000000000000131900000000000000000000000000000000000000000
SP81Bacteria;Proteobacteria;Gammaproteobacteria;Moraxellales;Moraxellaceae;Acinetobacter;lwoffii00000000000000000000000000926000081023502700253990001340000018000013020000008100000000242517
SP9Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;rogosae2542801222128395104000014101700009711005300000000000000000000000000000175000000000040000000000000
SP90Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;hongkongensis00000000590000110290000016030345000000000000000009388000000187500002691271000000000034000184120900
SP91Bacteria;Firmicutes;Bacilli;Lactobacillales;Aerococcaceae;Abiotrophia;defectiva0000146000000000001430001452282002000000000000000000000000000000000177424900000014072857453800002765203
SP92Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;parvula38715494669985945065395219951155741068858142774032110149016583671115336122314138478985648056501981180291208000951322306703761440017129800002275600501219003150501624579010435148278183427
SP93Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;dispar1921428979947053168391019104056223214075929095496733930032721112172243113411031283005366900000000000000000010117057004000652335000000000000188367
SP95Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Eikenella;corrodens0000180000000000170080817070000000105002350000000000061000000004473100000014000830580010782541818
SP97Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;perflava00002506129530000000400000724905299115901816700000000000000000000000000017510750000000005400593600000000
SP98Bacteria;Proteobacteria;Gammaproteobacteria;Moraxellales;Moraxellaceae;Acinetobacter;johnsonii00000000000000000000000000000000019141730636016911747600651142606075170172000900071445300013000000000000
SP99Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;melaninogenica4354674128324393857602072012015368410563080223310651350026001414015636100000200000077580000000004500540000090000050832461080541570000443145
SPN195Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT175 nov_97.551%46700045000000000000000019011640373529800000000000000000000000000000000000000000000231539349300
SPN52Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;graevenitzii_nov_97.737%000000000000000000000000718500000000000000000000000000000000000000000000000000
SPN64Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sanguinis_nov_97.782%00330000000000000000000000000011378200000000000000000000000000000000000000000000
SPN75Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT137 nov_97.228%03200000000000000000000000000105000000000000000000000000000000000000000000009200
SPN86Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT215 nov_97.614%00000292000000320000067000000000000000018739600000000000000000000000000000000000000
SPN96Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Kingella;sp. HMT932 nov_97.955%00000614000000000000000000000000000000000000000000000000000000000000000000000
SPP12Bacteria;Proteobacteria;Alphaproteobacteria;Hyphomicrobiales;Reyranellaceae;Reyranella;multispecies_spp12_210400003174608001108924000008162912000000000000000000000000000000000000000000000000000
SPP13Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;multispecies_spp13_32344263333182228561433421430620250911171544181601430527002880766140110568043000005765301190900117009700000000721060000000000005400000000000
SPP14Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Bradyrhizobiaceae;Afipia;multispecies_spp14_21208110420190132300611039701300201210000000000000000000000000000000000000000000000000000
SPP19Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp19_3000000010960000000000000000000000000000000000000000000000000000000000000000000
SPP2Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp2_3000074145903402368900000000125000065000000000000009000000000000000000000000140000000000
SPP21Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp21_20113904674917057191826109178661034195218024959034576855135835240190630000000023033003076849305150417000027114614620000300480000216633416910218000005
SPP32Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp32_28111116304541677134437118050210803962351794000744039245323727107111179700000000000804744230000330000000000000000000001100000000000
SPP36Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;multispecies_spp36_20001131228800001229199180000490306840146500000000000000000000000000000000000000000000000000
SPP37Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;multispecies_spp37_254060841779532229957104530297300272465221270880235189008818124716555597248727442625219000217336300372657001435903075513137736618428030711783544270005586634300172149611240062574577543476701052418804386778
SPP4Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp4_25700017110000000000105610805500653000000000000000000000000000000000173710000000000000000
SPP6Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;multispecies_spp6_207001200000000000000047436000000270000000000000000000000000000000000005075030000000
SPP7Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;multispecies_spp7_248100187980400011012505816100230223400000000000000000000000000000000009300000039000000000
SPP8Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-4];multispecies_spp8_200001500000000000000000000000000002173710000000000000000000000000000000000000000
SPP9Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp9_20000000000000000000000000000000000000000000000000000000000000000000003424670000
SPPN5Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_sppn5_2_nov_97.976%4599000197411000377602572436570616380348200256051610580943000000000093000000002033600001219231490000000000131070000000700
 
 
Download OTU Tables at Different Taxonomy Levels
PhylumCount*: Relative**: CLR***:
ClassCount*: Relative**: CLR***:
OrderCount*: Relative**: CLR***:
FamilyCount*: Relative**: CLR***:
GenusCount*: Relative**: CLR***:
SpeciesCount*: Relative**: CLR***:
* Read count
** Relative abundance (count/total sample count)
*** Centered log ratio transformed abundance
;
 
The species listed in the table has full taxonomy and a dynamically assigned species ID specific to this report. When some reads match with the reference sequences of more than one species equally (i.e., same percent identiy and alignmnet coverage), they can't be assigned to a particular species. Instead, they are assigned to multiple species with the species notaton "s__multispecies_spp2_2". In this notation, spp2 is the dynamic ID assigned to these reads that hit multiple sequences and the "_2" at the end of the notation means there are two species in the spp2.

You can look up which species are included in the multi-species assignment, in this table below:
 
 
 
 
Another type of notation is "s__multispecies_sppn2_2", in which the "n" in the sppn2 means it's a potential novel species because all the reads in this species have < 98% idenity to any of the reference sequences. They were grouped together based on de novo OTU clustering at 98% identity cutoff. And then a representative sequence was chosed to BLASTN search against the reference database to find the closest match (but will still be < 98%). This representative sequence also matched equally to more than one species, hence the "spp" was given in the label.
 
 

Taxonomy Bar Plots for All Samples

 
 

Taxonomy Bar Plots for Individual Comparison Groups

 
 
Comparison No.Comparison NameFamiliesGeneraSpecies
Comparison 1Female vs MalePDFSVGPDFSVGPDFSVG
Comparison 2Generalized periodontitis I-III AB vs Generalized periodontitis IV C vs Localized Periodontitis vs Reduced periodontiumPDFSVGPDFSVGPDFSVG
Comparison 3< 10 teeth vs ≥ 10 teethPDFSVGPDFSVGPDFSVG
Comparison 4Prosthesis > 1 year vs Prosthesis < 1 year PDFSVGPDFSVGPDFSVG
Comparison 5Peri-implant Plaque vs Peri-implant Saliva PDFSVGPDFSVGPDFSVG
Comparison 6Peri-implant II-IV BC Plaque vs Peri-implant II-IV BC Saliva PDFSVGPDFSVGPDFSVG
Comparison 7Peri-implant I-III AB Plaque vs Peri-implant I-III AB SalivaPDFSVGPDFSVGPDFSVG
Comparison 8Peri-implant IV C Plaque vs Peri-implant IV C SalivaPDFSVGPDFSVGPDFSVG
 
 

VIII. Analysis - Alpha Diversity

 

In ecology, alpha diversity (α-diversity) is the mean species diversity in sites or habitats at a local scale. The term was introduced by R. H. Whittaker[1][2] together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites or habitats at a more local scale (alpha diversity) and the differentiation among those habitats (beta diversity).


References:
Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338. doi:10.2307/1943563
Whittaker, R. H. (1972). Evolution and Measurement of Species Diversity. Taxon, 21, 213-251. doi:10.2307/1218190

 

Alpha Diversity Analysis by Rarefaction

Diversity measures are affected by the sampling depth. Rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples. Rarefaction curves generally grow rapidly at first, as the most common species are found, but the curves plateau as only the rarest species remain to be sampled.


References:
Willis AD. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol. 2019 Oct 23;10:2407. doi: 10.3389/fmicb.2019.02407. PMID: 31708888; PMCID: PMC6819366.

 
 
 

Boxplot of Alpha-diversity Indices

The two main factors taken into account when measuring diversity are richness and evenness. Richness is a measure of the number of different kinds of organisms present in a particular area. Evenness compares the similarity of the population size of each of the species present. There are many different ways to measure the richness and evenness. These measurements are called "estimators" or "indices". Below is a diversity of 3 commonly used indices showing the values for all the samples (dots) and in groups (boxes).

 
Alpha Diversity Box Plots for All Groups
 
 
 
 
 
 
 
Alpha Diversity Box Plots for Individual Comparisons
 
Comparison 1Female vs MaleView in PDFView in SVG
Comparison 2Generalized periodontitis I-III AB vs Generalized periodontitis IV C vs Localized Periodontitis vs Reduced periodontiumView in PDFView in SVG
Comparison 3< 10 teeth vs ≥ 10 teethView in PDFView in SVG
Comparison 4Prosthesis > 1 year vs Prosthesis < 1 year View in PDFView in SVG
Comparison 5Peri-implant Plaque vs Peri-implant Saliva View in PDFView in SVG
Comparison 6Peri-implant II-IV BC Plaque vs Peri-implant II-IV BC Saliva View in PDFView in SVG
Comparison 7Peri-implant I-III AB Plaque vs Peri-implant I-III AB SalivaView in PDFView in SVG
Comparison 8Peri-implant IV C Plaque vs Peri-implant IV C SalivaView in PDFView in SVG
 
 
 

Group Significance of Alpha-diversity Indices

To test whether the alpha diversity among different comparison groups are different statistically, we use the Kruskal Wallis H test provided the "alpha-group-significance" fucntion in the QIIME 2 "diversity" package. Kruskal Wallis H test is the non-parametric alternative to the One Way ANOVA. Non-parametric means that the test doesn’t assume your data comes from a particular distribution. The H test is used when the assumptions for ANOVA aren’t met (like the assumption of normality). It is sometimes called the one-way ANOVA on ranks, as the ranks of the data values are used in the test rather than the actual data points. The H test determines whether the medians of two or more groups are different.

Below are the Kruskal Wallis H test results for each comparison based on three different alpha diversity measures: 1) Observed species (features), 2) Shannon index, and 3) Simpson index.

 
 
Comparison 1.Female vs MaleObserved FeaturesShannon IndexSimpson Index
Comparison 2.Generalized periodontitis I-III AB vs Generalized periodontitis IV C vs Localized Periodontitis vs Reduced periodontiumObserved FeaturesShannon IndexSimpson Index
Comparison 3.< 10 teeth vs ≥ 10 teethObserved FeaturesShannon IndexSimpson Index
Comparison 4.Prosthesis > 1 year vs Prosthesis < 1 year Observed FeaturesShannon IndexSimpson Index
Comparison 5.Peri-implant Plaque vs Peri-implant Saliva Observed FeaturesShannon IndexSimpson Index
Comparison 6.Peri-implant II-IV BC Plaque vs Peri-implant II-IV BC Saliva Observed FeaturesShannon IndexSimpson Index
Comparison 7.Peri-implant I-III AB Plaque vs Peri-implant I-III AB SalivaObserved FeaturesShannon IndexSimpson Index
Comparison 8.Peri-implant IV C Plaque vs Peri-implant IV C SalivaObserved FeaturesShannon IndexSimpson Index
 
 

IX. Analysis - Beta Diversity

 

NMDS and PCoA Plots

Beta diversity compares the similarity (or dissimilarity) of microbial profiles between different groups of samples. There are many different similarity/dissimilarity metrics. In general, they can be quantitative (using sequence abundance, e.g., Bray-Curtis or weighted UniFrac) or binary (considering only presence-absence of sequences, e.g., binary Jaccard or unweighted UniFrac). They can be even based on phylogeny (e.g., UniFrac metrics) or not (non-UniFrac metrics, such as Bray-Curtis, etc.).

For microbiome studies, species profiles of samples can be compared with the Bray-Curtis dissimilarity, which is based on the count data type. The pair-wise Bray-Curtis dissimilarity matrix of all samples can then be subject to either multi-dimensional scaling (MDS, also known as PCoA) or non-metric MDS (NMDS).

MDS/PCoA is a scaling or ordination method that starts with a matrix of similarities or dissimilarities between a set of samples and aims to produce a low-dimensional graphical plot of the data in such a way that distances between points in the plot are close to original dissimilarities.

NMDS is similar to MDS, however it does not use the dissimilarities data, instead it converts them into the ranks and use these ranks in the calculation.

In our beta diversity analysis, Bray-Curtis dissimilarity matrix was first calculated and then plotted by the PCoA and NMDS separately. Below are beta diveristy results for all groups together:

 
 
NMDS and PCoA Plots for All Groups
 
 
 
 
 

The above PCoA and NMDS plots are based on count data. The count data can also be transformed into centered log ratio (CLR) for each species. The CLR data is no longer count data and cannot be used in Bray-Curtis dissimilarity calculation. Instead CLR can be compared with Euclidean distances. When CLR data are compared by Euclidean distance, the distance is also called Aitchison distance.

Below are the NMDS and PCoA plots of the Aitchison distances of the samples:

 
 
 
 
 
 
 
NMDS and PCoA Plots for Individual Comparisons
 
 
Comparison No.Comparison NameNMDAPCoA
Bray-CurtisCLR EuclideanBray-CurtisCLR Euclidean
Comparison 1Female vs MalePDFSVGPDFSVGPDFSVGPDFSVG
Comparison 2Generalized periodontitis I-III AB vs Generalized periodontitis IV C vs Localized Periodontitis vs Reduced periodontiumPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 3< 10 teeth vs ≥ 10 teethPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 4Prosthesis > 1 year vs Prosthesis < 1 year PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 5Peri-implant Plaque vs Peri-implant Saliva PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 6Peri-implant II-IV BC Plaque vs Peri-implant II-IV BC Saliva PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 7Peri-implant I-III AB Plaque vs Peri-implant I-III AB SalivaPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 8Peri-implant IV C Plaque vs Peri-implant IV C SalivaPDFSVGPDFSVGPDFSVGPDFSVG
 
 
 
 
 

Interactive 3D PCoA Plots - Bray-Curtis Dissimilarity

 
 
 

Interactive 3D PCoA Plots - Euclidean Distance

 
 
 

Interactive 3D PCoA Plots - Correlation Coefficients

 
 
 

Group Significance of Beta-diversity Indices

To test whether the between-group dissimilarities are significantly greater than the within-group dissimilarities, the "beta-group-significance" function provided in the QIIME 2 "diversity" package was used with PERMANOVA (permutational multivariate analysis of variance) as the group significant testing method.

Three beta diversity matrics were used: 1) Bray–Curtis dissimilarity 2) Correlation coefficient matrix , and 3) Aitchison distance (Euclidean distance between clr-transformed compositions).

 
 
Comparison 1.Female vs MaleBray–CurtisCorrelationAitchison
Comparison 2.Generalized periodontitis I-III AB vs Generalized periodontitis IV C vs Localized Periodontitis vs Reduced periodontiumBray–CurtisCorrelationAitchison
Comparison 3.< 10 teeth vs ≥ 10 teethBray–CurtisCorrelationAitchison
Comparison 4.Prosthesis > 1 year vs Prosthesis < 1 year Bray–CurtisCorrelationAitchison
Comparison 5.Peri-implant Plaque vs Peri-implant Saliva Bray–CurtisCorrelationAitchison
Comparison 6.Peri-implant II-IV BC Plaque vs Peri-implant II-IV BC Saliva Bray–CurtisCorrelationAitchison
Comparison 7.Peri-implant I-III AB Plaque vs Peri-implant I-III AB SalivaBray–CurtisCorrelationAitchison
Comparison 8.Peri-implant IV C Plaque vs Peri-implant IV C SalivaBray–CurtisCorrelationAitchison
 
 
 

X. Analysis - Differential Abundance

16S rRNA next generation sequencing (NGS) generates a fixed number of reads that reflect the proportion of different species in a sample, i.e., the relative abundance of species, instead of the absolute abundance. In Mathematics, measurements involving probabilities, proportions, percentages, and ppm can all be thought of as compositional data. This makes the microbiome read count data “compositional” (Gloor et al, 2017). In general, compositional data represent parts of a whole which only carry relative information (http://www.compositionaldata.com/).

The problem of microbiome data being compositional arises when comparing two groups of samples for identifying “differentially abundant” species. A species with the same absolute abundance between two conditions, its relative abundances in the two conditions (e.g., percent abundance) can become different if the relative abundance of other species change greatly. This problem can lead to incorrect conclusion in terms of differential abundance for microbial species in the samples.

When studying differential abundance (DA), the current better approach is to transform the read count data into log ratio data. The ratios are calculated between read counts of all species in a sample to a “reference” count (e.g., mean read count of the sample). The log ratio data allow the detection of DA species without being affected by percentage bias mentioned above

In this report, a compositional DA analysis tool “ANCOM” (analysis of composition of microbiomes) was used. ANCOM transforms the count data into log-ratios and thus is more suitable for comparing the composition of microbiomes in two or more populations. "ANCOM" generates a table of features with W-statistics and whether the null hypothesis is rejected. The “W” is the W-statistic, or number of features that a single feature is tested to be significantly different against. Hence the higher the "W" the more statistical sifgnificant that a feature/species is differentially abundant.


References:

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017 Nov 15;8:2224. doi: 10.3389/fmicb.2017.02224. PMID: 29187837; PMCID: PMC5695134.

Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015 May 29;26:27663. doi: 10.3402/mehd.v26.27663. PMID: 26028277; PMCID: PMC4450248.

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 

ANCOM Differential Abundance Analysis

 
ANCOM Results for Individual Comparisons
Comparison No.Comparison Name
Comparison 1.Female vs Male
Comparison 2.Generalized periodontitis I-III AB vs Generalized periodontitis IV C vs Localized Periodontitis vs Reduced periodontium
Comparison 3.< 10 teeth vs ≥ 10 teeth
Comparison 4.Prosthesis > 1 year vs Prosthesis < 1 year
Comparison 5.Peri-implant Plaque vs Peri-implant Saliva
Comparison 6.Peri-implant II-IV BC Plaque vs Peri-implant II-IV BC Saliva
Comparison 7.Peri-implant I-III AB Plaque vs Peri-implant I-III AB Saliva
Comparison 8.Peri-implant IV C Plaque vs Peri-implant IV C Saliva
 
 

ANCOM-BC2 Differential Abundance Analysis

 

Starting with version V1.2, we include the results of ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) (Lin and Peddada 2020). ANCOM-BC is an updated version of "ANCOM" that:
(a) provides statistically valid test with appropriate p-values,
(b) provides confidence intervals for differential abundance of each taxon,
(c) controls the False Discovery Rate (FDR),
(d) maintains adequate power, and
(e) is computationally simple to implement.

The bias correction (BC) addresses a challenging problem of the bias introduced by differences in the sampling fractions across samples. This bias has been a major hurdle in performing DA analysis of microbiome data. ANCOM-BC estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework.

Starting with version V1.43, ANCOM-BC2 is used instead of ANCOM-BC, So that multiple pairwise directional test can be performed (if there are more than two gorups in a comparison). When performing pairwise directional test, the mixed directional false discover rate (mdFDR) is taken into account. The mdFDR is the combination of false discovery rate due to multiple testing, multiple pairwise comparisons, and directional tests within each pairwise comparison. The mdFDR is adopted from (Guo, Sarkar, and Peddada 2010; Grandhi, Guo, and Peddada 2016). For more detail explanation and additional features of ANCOM-BC2 please see author's documentation.

References:

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

Guo W, Sarkar SK, Peddada SD. Controlling false discoveries in multidimensional directional decisions, with applications to gene expression data on ordered categories. Biometrics. 2010 Jun;66(2):485-92. doi: 10.1111/j.1541-0420.2009.01292.x. Epub 2009 Jul 23. PMID: 19645703; PMCID: PMC2895927.

Grandhi A, Guo W, Peddada SD. A multiple testing procedure for multi-dimensional pairwise comparisons with application to gene expression studies. BMC Bioinformatics. 2016 Feb 25;17:104. doi: 10.1186/s12859-016-0937-5. PMID: 26917217; PMCID: PMC4768411.

 
 
ANCOM-BC Results for Individual Comparisons
 
Comparison No.Comparison Name
Comparison 1.Female vs Male
Comparison 2.Generalized periodontitis I-III AB vs Generalized periodontitis IV C vs Localized Periodontitis vs Reduced periodontium
Comparison 3.< 10 teeth vs ≥ 10 teeth
Comparison 4.Prosthesis > 1 year vs Prosthesis < 1 year
Comparison 5.Peri-implant Plaque vs Peri-implant Saliva
Comparison 6.Peri-implant II-IV BC Plaque vs Peri-implant II-IV BC Saliva
Comparison 7.Peri-implant I-III AB Plaque vs Peri-implant I-III AB Saliva
Comparison 8.Peri-implant IV C Plaque vs Peri-implant IV C Saliva
 
 
 

LEfSe - Linear Discriminant Analysis Effect Size

LEfSe (Linear Discriminant Analysis Effect Size) is an alternative method to find "organisms, genes, or pathways that consistently explain the differences between two or more microbial communities" (Segata et al., 2011). Specifically, LEfSe uses rank-based Kruskal-Wallis (KW) sum-rank test to detect features with significant differential (relative) abundance with respect to the class of interest. Since it is rank-based, instead of proportional based, the differential species identified among the comparison groups is less biased (than percent abundance based).

Reference:

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011 Jun 24;12(6):R60. doi: 10.1186/gb-2011-12-6-r60. PMID: 21702898; PMCID: PMC3218848.

 
Female vs Male
 
 
 
 
 
 
 
LEfSe Results for All Comparisons
 
Comparison No.Comparison Name
Comparison 1.Female vs Male
Comparison 2.Generalized periodontitis I-III AB vs Generalized periodontitis IV C vs Localized Periodontitis vs Reduced periodontium
Comparison 3.< 10 teeth vs ≥ 10 teeth
Comparison 4.Prosthesis > 1 year vs Prosthesis < 1 year
Comparison 5.Peri-implant Plaque vs Peri-implant Saliva
Comparison 6.Peri-implant II-IV BC Plaque vs Peri-implant II-IV BC Saliva
Comparison 7.Peri-implant I-III AB Plaque vs Peri-implant I-III AB Saliva
Comparison 8.Peri-implant IV C Plaque vs Peri-implant IV C Saliva
 
 

XI. Analysis - Heatmap Profile

 

Species vs Sample Abundance Heatmap for All Samples

 
 
 

Heatmaps for Individual Comparisons

 
A) Two-way clustering - clustered on both columns (Samples) and rows (organism)
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Female vs MalePDFSVGPDFSVGPDFSVG
Comparison 2Generalized periodontitis I-III AB vs Generalized periodontitis IV C vs Localized Periodontitis vs Reduced periodontiumPDFSVGPDFSVGPDFSVG
Comparison 3< 10 teeth vs ≥ 10 teethPDFSVGPDFSVGPDFSVG
Comparison 4Prosthesis > 1 year vs Prosthesis < 1 year PDFSVGPDFSVGPDFSVG
Comparison 5Peri-implant Plaque vs Peri-implant Saliva PDFSVGPDFSVGPDFSVG
Comparison 6Peri-implant II-IV BC Plaque vs Peri-implant II-IV BC Saliva PDFSVGPDFSVGPDFSVG
Comparison 7Peri-implant I-III AB Plaque vs Peri-implant I-III AB SalivaPDFSVGPDFSVGPDFSVG
Comparison 8Peri-implant IV C Plaque vs Peri-implant IV C SalivaPDFSVGPDFSVGPDFSVG
 
 
B) One-way clustering - clustered on rows (organism) only
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Female vs MalePDFSVGPDFSVGPDFSVG
Comparison 2Generalized periodontitis I-III AB vs Generalized periodontitis IV C vs Localized Periodontitis vs Reduced periodontiumPDFSVGPDFSVGPDFSVG
Comparison 3< 10 teeth vs ≥ 10 teethPDFSVGPDFSVGPDFSVG
Comparison 4Prosthesis > 1 year vs Prosthesis < 1 year PDFSVGPDFSVGPDFSVG
Comparison 5Peri-implant Plaque vs Peri-implant Saliva PDFSVGPDFSVGPDFSVG
Comparison 6Peri-implant II-IV BC Plaque vs Peri-implant II-IV BC Saliva PDFSVGPDFSVGPDFSVG
Comparison 7Peri-implant I-III AB Plaque vs Peri-implant I-III AB SalivaPDFSVGPDFSVGPDFSVG
Comparison 8Peri-implant IV C Plaque vs Peri-implant IV C SalivaPDFSVGPDFSVGPDFSVG
 
 
C) No clustering
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Female vs MalePDFSVGPDFSVGPDFSVG
Comparison 2Generalized periodontitis I-III AB vs Generalized periodontitis IV C vs Localized Periodontitis vs Reduced periodontiumPDFSVGPDFSVGPDFSVG
Comparison 3< 10 teeth vs ≥ 10 teethPDFSVGPDFSVGPDFSVG
Comparison 4Prosthesis > 1 year vs Prosthesis < 1 year PDFSVGPDFSVGPDFSVG
Comparison 5Peri-implant Plaque vs Peri-implant Saliva PDFSVGPDFSVGPDFSVG
Comparison 6Peri-implant II-IV BC Plaque vs Peri-implant II-IV BC Saliva PDFSVGPDFSVGPDFSVG
Comparison 7Peri-implant I-III AB Plaque vs Peri-implant I-III AB SalivaPDFSVGPDFSVGPDFSVG
Comparison 8Peri-implant IV C Plaque vs Peri-implant IV C SalivaPDFSVGPDFSVGPDFSVG
 
 

XII. Analysis - Network Association

To analyze the co-occurrence or co-exclusion between microbial species among different samples, network correlation analysis tools are usually used for this purpose. However, microbiome count data are compositional. If count data are normalized to the total number of counts in the sample, the data become not independent and traditional statistical metrics (e.g., correlation) for the detection of specie-species relationships can lead to spurious results. In addition, sequencing-based studies typically measure hundreds of OTUs (species) on few samples; thus, inference of OTU-OTU association networks is severely under-powered. Here we use SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues (Kurtz et al., 2015). SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. SPIEC-EASI provides two algorithms for network inferencing – 1) Meinshausen-Bühlmann's neighborhood selection (MB method) and inverse covariance selection (GLASSO method, i.e., graphical least absolute shrinkage and selection operator). This is fundamentally distinct from SparCC, which essentially estimate pairwise correlations. In addition to these two methods, we provide the results of a third method - SparCC (Sparse Correlations for Compositional Data)(Friedman & Alm 2012), which is also a method for inferring correlations from compositional data. SparCC estimates the linear Pearson correlations between the log-transformed components.


References:

Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015 May 7;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226. PMID: 25950956; PMCID: PMC4423992.

Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20. PMID: 23028285; PMCID: PMC3447976.

 

SPIEC-EASI Network Inference by Neighborhood Selection (MB Method)

 

 

 

Association Network Inference by SparCC

 

 

 
 

XIII. Disclaimer

The results of this analysis are for research purpose only. They are not intended to diagnose, treat, cure, or prevent any disease. Forsyth and FOMC are not responsible for use of information provided in this report outside the research area.

 

Copyright FOMC 2024