FOMC Service Report

16S rRNA Gene V1V3 Amplicon Sequencing

Version V1.42

Version History

The Forsyth Institute, Cambridge, MA, USA
December 13, 2022

Project ID: FOMC5451_8254


I. Project Summary

Project FOMC5451_8254 services include NGS sequencing of the V1V3 region of the 16S rRNA gene amplicons from the samples. First and foremost, please download this report, as well as the sequence raw data from the download links provided below. These links will expire after 60 days. We cannot guarantee the availability of your data after 60 days.

Full Bioinformatics analysis service was requested. We provide many analyses, starting from the raw sequence quality and noise filtering, pair reads merging, as well as chimera filtering for the sequences, using the DADA2 denosing algorithm and pipeline.

We also provide many downstream analyses such as taxonomy assignment, alpha and beta diversity analyses, and differential abundance analysis.

For taxonomy assignment, most informative would be the taxonomy barplots. We provide an interactive barplots to show the relative abundance of microbes at different taxonomy levels (from Phylum to species) that you can choose.

If you specify which groups of samples you want to compare for differential abundance, we provide both ANCOM and LEfSe differential abundance analysis.

 

II. Workflow Checklist

1.Sample Received
2.Sample Quality Evaluated
3.Sample Prepared for Sequencing
4.Next-Gen Sequencing
5.Sequence Quality Check
6.Absolute Abundance
7.Report and Raw Sequence Data Available for Download
8.Bioinformatics Analysis - Reads Processing (DADA2 Quality Trimming, Denoising, Paired Reads Merging)
9.Bioinformatics Analysis - Reads Taxonomy Assignment
10.Bioinformatics Analysis - Alpha Diversity Analysis
11.Bioinformatics Analysis - Beta Diversity Analysis
12.Bioinformatics Analysis - Differential Abundance Analysis
13.Bioinformatics Analysis - Heatmap Profile
14.Bioinformatics Analysis - Network Association
 

III. NGS Sequencing

The samples were processed and analyzed with the ZymoBIOMICS® Service: Targeted Metagenomic Sequencing (Zymo Research, Irvine, CA).

DNA Extraction: If DNA extraction was performed, one of three different DNA extraction kits was used depending on the sample type and sample volume and were used according to the manufacturer’s instructions, unless otherwise stated. The kit used in this project is marked below:

ZymoBIOMICS® DNA Miniprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS® DNA Microprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS®-96 MagBead DNA Kit (Zymo Research, Irvine, CA)
N/A (DNA Extraction Not Performed)
Elution Volume: 50µL
Additional Notes: NA

Targeted Library Preparation: The DNA samples were prepared for targeted sequencing with the Quick-16S™ NGS Library Prep Kit (Zymo Research, Irvine, CA). These primers were custom designed by Zymo Research to provide the best coverage of the 16S gene while maintaining high sensitivity. The primer sets used in this project are marked below:

Quick-16S™ Primer Set V1-V2 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V1-V3 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V3-V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V6-V8 (Zymo Research, Irvine, CA)
Other: NA
Additional Notes: NA

The sequencing library was prepared using an innovative library preparation process in which PCR reactions were performed in real-time PCR machines to control cycles and therefore limit PCR chimera formation. The final PCR products were quantified with qPCR fluorescence readings and pooled together based on equal molarity. The final pooled library was cleaned up with the Select-a-Size DNA Clean & Concentrator™ (Zymo Research, Irvine, CA), then quantified with TapeStation® (Agilent Technologies, Santa Clara, CA) and Qubit® (Thermo Fisher Scientific, Waltham, WA).

Control Samples: The ZymoBIOMICS® Microbial Community Standard (Zymo Research, Irvine, CA) was used as a positive control for each DNA extraction, if performed. The ZymoBIOMICS® Microbial Community DNA Standard (Zymo Research, Irvine, CA) was used as a positive control for each targeted library preparation. Negative controls (i.e. blank extraction control, blank library preparation control) were included to assess the level of bioburden carried by the wet-lab process.

Sequencing: The final library was sequenced on Illumina® MiSeq™ with a V3 reagent kit (600 cycles). The sequencing was performed with 10% PhiX spike-in.

 

IV. Complete Report Download

The complete report of your project, including all links in this report, can be downloaded by clicking the link provided below. The downloaded file is a compressed ZIP file and once unzipped, open the file “REPORT.html” (may only shown as "REPORT" in your computer) by double clicking it. Your default web browser will open it and you will see the exact content of this report.

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Complete report download link:

To view the report, please follow the following steps:
1.Download the .zip file from the report link above.
2.Extract all the contents of the downloaded .zip file to your desktop.
3.Open the extracted folder and find the "REPORT.html" (may shown as only "REPORT").
4.Open (double-clicking) the REPORT.html file. Your default browser will open the top age of the complete report. Within the report, there are links to view all the analyses performed for the project.

 

V. Raw Sequence Data Download

The raw NGS sequence data is available for download with the link provided below. The data is a compressed ZIP file and can be unzipped to individual sequence files. Since this is a pair-end sequencing, each of your samples is represented by two sequence files, one for READ 1, with the file extension “*_R1.fastq.gz”, another READ 2, with the file extension “*_R1.fastq.gz”. The files are in FASTQ format and are compressed. FASTQ format is a text-based data format for storing both a biological sequence and its corresponding quality scores. Most sequence analysis software will be able to open them. The Sample IDs associated with the R1 and R2 fastq files are listed in the table below:

Sample IDOriginal Sample IDRead 1 File NameRead 2 File Name
F5451.S10original sample ID herezr5451_10V1V3_R1.fastq.gzzr5451_10V1V3_R2.fastq.gz
F5451.S11original sample ID herezr5451_11V1V3_R1.fastq.gzzr5451_11V1V3_R2.fastq.gz
F5451.S12original sample ID herezr5451_12V1V3_R1.fastq.gzzr5451_12V1V3_R2.fastq.gz
F5451.S13original sample ID herezr5451_13V1V3_R1.fastq.gzzr5451_13V1V3_R2.fastq.gz
F5451.S14original sample ID herezr5451_14V1V3_R1.fastq.gzzr5451_14V1V3_R2.fastq.gz
F5451.S15original sample ID herezr5451_15V1V3_R1.fastq.gzzr5451_15V1V3_R2.fastq.gz
F5451.S16original sample ID herezr5451_16V1V3_R1.fastq.gzzr5451_16V1V3_R2.fastq.gz
F5451.S17original sample ID herezr5451_17V1V3_R1.fastq.gzzr5451_17V1V3_R2.fastq.gz
F5451.S18original sample ID herezr5451_18V1V3_R1.fastq.gzzr5451_18V1V3_R2.fastq.gz
F5451.S19original sample ID herezr5451_19V1V3_R1.fastq.gzzr5451_19V1V3_R2.fastq.gz
F5451.S01original sample ID herezr5451_1V1V3_R1.fastq.gzzr5451_1V1V3_R2.fastq.gz
F5451.S20original sample ID herezr5451_20V1V3_R1.fastq.gzzr5451_20V1V3_R2.fastq.gz
F5451.S21original sample ID herezr5451_21V1V3_R1.fastq.gzzr5451_21V1V3_R2.fastq.gz
F5451.S22original sample ID herezr5451_22V1V3_R1.fastq.gzzr5451_22V1V3_R2.fastq.gz
F5451.S23original sample ID herezr5451_23V1V3_R1.fastq.gzzr5451_23V1V3_R2.fastq.gz
F5451.S24original sample ID herezr5451_24V1V3_R1.fastq.gzzr5451_24V1V3_R2.fastq.gz
F5451.S25original sample ID herezr5451_25V1V3_R1.fastq.gzzr5451_25V1V3_R2.fastq.gz
F5451.S26original sample ID herezr5451_26V1V3_R1.fastq.gzzr5451_26V1V3_R2.fastq.gz
F5451.S27original sample ID herezr5451_27V1V3_R1.fastq.gzzr5451_27V1V3_R2.fastq.gz
F5451.S28original sample ID herezr5451_28V1V3_R1.fastq.gzzr5451_28V1V3_R2.fastq.gz
F5451.S29original sample ID herezr5451_29V1V3_R1.fastq.gzzr5451_29V1V3_R2.fastq.gz
F5451.S02original sample ID herezr5451_2V1V3_R1.fastq.gzzr5451_2V1V3_R2.fastq.gz
F5451.S30original sample ID herezr5451_30V1V3_R1.fastq.gzzr5451_30V1V3_R2.fastq.gz
F5451.S03original sample ID herezr5451_3V1V3_R1.fastq.gzzr5451_3V1V3_R2.fastq.gz
F5451.S04original sample ID herezr5451_4V1V3_R1.fastq.gzzr5451_4V1V3_R2.fastq.gz
F5451.S05original sample ID herezr5451_5V1V3_R1.fastq.gzzr5451_5V1V3_R2.fastq.gz
F5451.S06original sample ID herezr5451_6V1V3_R1.fastq.gzzr5451_6V1V3_R2.fastq.gz
F5451.S07original sample ID herezr5451_7V1V3_R1.fastq.gzzr5451_7V1V3_R2.fastq.gz
F5451.S08original sample ID herezr5451_8V1V3_R1.fastq.gzzr5451_8V1V3_R2.fastq.gz
F5451.S09original sample ID herezr5451_9V1V3_R1.fastq.gzzr5451_9V1V3_R2.fastq.gz
F8254.S10original sample ID herezr8254_10V1V3_R1.fastq.gzzr8254_10V1V3_R2.fastq.gz
F8254.S11original sample ID herezr8254_11V1V3_R1.fastq.gzzr8254_11V1V3_R2.fastq.gz
F8254.S12original sample ID herezr8254_12V1V3_R1.fastq.gzzr8254_12V1V3_R2.fastq.gz
F8254.S13original sample ID herezr8254_13V1V3_R1.fastq.gzzr8254_13V1V3_R2.fastq.gz
F8254.S14original sample ID herezr8254_14V1V3_R1.fastq.gzzr8254_14V1V3_R2.fastq.gz
F8254.S15original sample ID herezr8254_15V1V3_R1.fastq.gzzr8254_15V1V3_R2.fastq.gz
F8254.S16original sample ID herezr8254_16V1V3_R1.fastq.gzzr8254_16V1V3_R2.fastq.gz
F8254.S17original sample ID herezr8254_17V1V3_R1.fastq.gzzr8254_17V1V3_R2.fastq.gz
F8254.S18original sample ID herezr8254_18V1V3_R1.fastq.gzzr8254_18V1V3_R2.fastq.gz
F8254.S19original sample ID herezr8254_19V1V3_R1.fastq.gzzr8254_19V1V3_R2.fastq.gz
F8254.S01original sample ID herezr8254_1V1V3_R1.fastq.gzzr8254_1V1V3_R2.fastq.gz
F8254.S20original sample ID herezr8254_20V1V3_R1.fastq.gzzr8254_20V1V3_R2.fastq.gz
F8254.S02original sample ID herezr8254_2V1V3_R1.fastq.gzzr8254_2V1V3_R2.fastq.gz
F8254.S03original sample ID herezr8254_3V1V3_R1.fastq.gzzr8254_3V1V3_R2.fastq.gz
F8254.S04original sample ID herezr8254_4V1V3_R1.fastq.gzzr8254_4V1V3_R2.fastq.gz
F8254.S05original sample ID herezr8254_5V1V3_R1.fastq.gzzr8254_5V1V3_R2.fastq.gz
F8254.S06original sample ID herezr8254_6V1V3_R1.fastq.gzzr8254_6V1V3_R2.fastq.gz
F8254.S07original sample ID herezr8254_7V1V3_R1.fastq.gzzr8254_7V1V3_R2.fastq.gz
F8254.S08original sample ID herezr8254_8V1V3_R1.fastq.gzzr8254_8V1V3_R2.fastq.gz
F8254.S09original sample ID herezr8254_9V1V3_R1.fastq.gzzr8254_9V1V3_R2.fastq.gz

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Raw sequence data download link:

 

VI. Analysis - DADA2 Read Processing

What is DADA2?

DADA2 is a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. DADA2 identified more real variants and output fewer spurious sequences than other methods.

DADA2’s advantage is that it uses more of the data. The DADA2 error model incorporates quality information, which is ignored by all other methods after filtering. The DADA2 error model incorporates quantitative abundances, whereas most other methods use abundance ranks if they use abundance at all. The DADA2 error model identifies the differences between sequences, eg. A->C, whereas other methods merely count the mismatches. DADA2 can parameterize its error model from the data itself, rather than relying on previous datasets that may or may not reflect the PCR and sequencing protocols used in your study.

DADA2 Publication: Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016 Jul;13(7):581-3. doi: 10.1038/nmeth.3869. Epub 2016 May 23. PMID: 27214047; PMCID: PMC4927377.

DADA2 Software Package is available as an R package at : https://benjjneb.github.io/dada2/index.html

Analysis Procedures:

DADA2 pipeline includes several tools for read quality control, including quality filtering, trimming, denoising, pair merging and chimera filtering. Below are the major processing steps of DADA2:

Step 1. Read trimming based on sequence quality The quality of NGS Illumina sequences often decreases toward the end of the reads. DADA2 allows to trim off the poor quality read ends in order to improve the error model building and pair mergicing performance.

Step 2. Learn the Error Rates The DADA2 algorithm makes use of a parametric error model (err) and every amplicon dataset has a different set of error rates. The learnErrors method learns this error model from the data, by alternating estimation of the error rates and inference of sample composition until they converge on a jointly consistent solution. As in many machine-learning problems, the algorithm must begin with an initial guess, for which the maximum possible error rates in this data are used (the error rates if only the most abundant sequence is correct and all the rest are errors).

Step 3. Infer amplicon sequence variants (ASVs) based on the error model built in previous step. This step is also called sequence "denoising". The outcome of this step is a list of ASVs that are the equivalent of oligonucleotides.

Step 4. Merge paired reads. If the sequencing products are read pairs, DADA2 will merge the R1 and R2 ASVs into single sequences. Merging is performed by aligning the denoised forward reads with the reverse-complement of the corresponding denoised reverse reads, and then constructing the merged “contig” sequences. By default, merged sequences are only output if the forward and reverse reads overlap by at least 12 bases, and are identical to each other in the overlap region (but these conditions can be changed via function arguments).

Step 5. Remove chimera. The core dada method corrects substitution and indel errors, but chimeras remain. Fortunately, the accuracy of sequence variants after denoising makes identifying chimeric ASVs simpler than when dealing with fuzzy OTUs. Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a right-segment from two more abundant “parent” sequences. The frequency of chimeric sequences varies substantially from dataset to dataset, and depends on on factors including experimental procedures and sample complexity.

Results

1. Read Quality Plots NGS sequence analaysis starts with visualizing the quality of the sequencing. Below are the quality plots of the first sample for the R1 and R2 reads separately. In gray-scale is a heat map of the frequency of each quality score at each base position. The mean quality score at each position is shown by the green line, and the quartiles of the quality score distribution by the orange lines. The forward reads are usually of better quality. It is a common practice to trim the last few nucleotides to avoid less well-controlled errors that can arise there. The trimming affects the downstream steps including error model building, merging and chimera calling. FOMC uses an empirical approach to test many combinations of different trim length in order to achieve best final amplicon sequence variants (ASVs), see the next section “Optimal trim length for ASVs”.

Quality plots for all samples:

2. Optimal trim length for ASVs The final number of merged and chimera-filtered ASVs depends on the quality filtering (hence trimming) in the very beginning of the DADA2 pipeline. In order to achieve highest number of ASVs, an empirical approach was used -

  1. Create a random subset of each sample consisting of 5,000 R1 and 5,000 R2 (to reduce computation time)
  2. Trim 10 bases at a time from the ends of both R1 and R2 up to 50 bases
  3. For each combination of trimmed length (e.g., 300x300, 300x290, 290x290 etc), the trimmed reads are subject to the entire DADA2 pipeline for chimera-filtered merged ASVs
  4. The combination with highest percentage of the input reads becoming final ASVs is selected for the complete set of data

Below is the result of such operation, showing ASV percentages of total reads for all trimming combinations (1st Column = R1 lengths in bases; 1st Row = R2 lengths in bases):

R1/R2281271261251241231
32114.28%34.37%37.92%41.41%38.72%30.74%
31117.04%39.62%43.87%44.67%37.35%23.85%
30117.28%39.78%42.24%36.19%23.47%18.78%
29117.80%39.42%34.20%22.59%18.51%13.63%
28117.82%31.97%20.08%18.30%13.50%3.11%
27114.30%18.63%15.62%13.56%3.17%1.92%

Based on the above result, the trim length combination of R1 = 311 bases and R2 = 251 bases (highlighted red above), was chosen for generating final ASVs for all sequences. This combination generated highest number of merged non-chimeric ASVs and was used for downstream analyses, if requested.

3. Error plots from learning the error rates After DADA2 building the error model for the set of data, it is always worthwhile, as a sanity check if nothing else, to visualize the estimated error rates. The error rates for each possible transition (A→C, A→G, …) are shown below. Points are the observed error rates for each consensus quality score. The black line shows the estimated error rates after convergence of the machine-learning algorithm. The red line shows the error rates expected under the nominal definition of the Q-score. The ideal result would be the estimated error rates (black line) are a good fit to the observed rates (points), and the error rates drop with increased quality as expected.

Forward Read R1 Error Plot


Reverse Read R2 Error Plot

The PDF version of these plots are available here:

 

4. DADA2 Result Summary The table below shows the summary of the DADA2 analysis, tracking paired read counts of each samples for all the steps during DADA2 denoising process - including end-trimming (filtered), denoising (denoisedF, denoisedF), pair merging (merged) and chimera removal (nonchim).

Sample IDF5451.S01F5451.S02F5451.S03F5451.S04F5451.S05F5451.S06F5451.S07F5451.S08F5451.S09F5451.S10F5451.S11F5451.S12F5451.S13F5451.S14F5451.S15F5451.S16F5451.S17F5451.S18F5451.S19F5451.S20F5451.S21F5451.S22F5451.S23F5451.S24F5451.S25F5451.S26F5451.S27F5451.S28F5451.S29F5451.S30F8254.S01F8254.S02F8254.S03F8254.S04F8254.S05F8254.S06F8254.S07F8254.S08F8254.S09F8254.S10F8254.S11F8254.S12F8254.S13F8254.S14F8254.S15F8254.S16F8254.S17F8254.S18F8254.S19F8254.S20Row SumPercentage
input29,86835,92031,14837,81734,56834,88734,47033,03048,00054,53127,93048,20929,28030,28226,21225,92021,01023,32728,82129,85717,53316,92717,75426,84224,56224,44119,97925,32124,15819,07431,41533,77540,43247,99023,19229,45824,86136,63644,31335,08236,28032,40032,39131,98533,75933,95830,49335,90032,84033,7181,562,556100.00%
filtered29,44535,38930,70437,28534,04334,40333,95832,54547,32553,73227,52247,57528,86929,84125,85525,53420,72422,95028,44629,41317,29416,70517,52026,43624,21424,10019,70724,95923,80718,80431,12733,44840,03547,52622,95329,14924,66636,26043,87634,71535,92732,08832,04531,67633,47633,63030,20035,52132,53633,3901,543,34898.77%
denoisedF28,85434,78230,10036,34733,50733,75733,20431,75546,13452,04826,75046,75728,26129,32624,63224,41920,08722,33827,01925,88516,89316,20416,84025,72823,34922,63519,21224,53021,14618,39130,45232,74339,39546,60022,25228,53723,98935,58543,25033,92335,40331,51831,01030,84332,69233,09829,71534,93732,00132,7761,501,60996.10%
denoisedR28,07233,46829,53735,63632,62933,06432,78231,14044,91349,65626,32045,53327,63428,55524,07523,77819,34921,33126,45326,24816,45415,74616,57924,99022,52522,18318,94123,79520,79017,71129,67732,14138,53445,69421,76228,10123,61035,08642,50733,29034,27030,69730,59530,41032,03232,28228,87233,79530,80832,0481,466,09893.83%
merged23,39227,40027,79932,57129,48230,20030,18528,97139,10141,38323,44942,11524,19727,08112,32412,15315,97118,17321,12616,73814,81612,36910,15222,74219,35118,54317,22221,30116,03115,94226,41728,76535,48443,56417,61726,01320,92028,00635,46630,50531,71828,46927,72027,25826,38930,45726,94031,86329,20429,4441,274,49981.57%
nonchim12,48114,25911,62513,48111,38411,02015,66113,19117,93321,30814,12024,14710,56112,9116,8526,4479,20211,98713,0959,0999,3648,8437,55815,48910,42912,2689,04913,52211,0549,38312,58311,30520,27321,8167,02710,78810,33113,07710,45417,38917,18714,42511,33912,33511,44910,9599,53112,45415,39316,131633,96940.57%

This table can be downloaded as an Excel table below:

 

5. DADA2 Amplicon Sequence Variants (ASVs). A total of 5056 unique merged and chimera-free ASV sequences were identified, and their corresponding read counts for each sample are available in the "ASV Read Count Table" with rows for the ASV sequences and columns for sample. This read count table can be used for microbial profile comparison among different samples and the sequences provided in the table can be used to taxonomy assignment.

 

The table can be downloaded from this link:

 
 

Sample Meta Information

Download Sample Meta Information
#SampleIDSampleNameGenderStageNumber_of_TeethMucositisImplant_systemDurationBone_GraftGroup
F5451.S01Patient003.Pla22FemaleNon-end stage-grade G Periodontitis< 10 teethPeri-implant HealthZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant Health
F5451.S02Patient003.Pla27FemaleNon-end stage-grade G Periodontitis< 10 teethPeri-implant HealthZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant Health
F5451.S03Patient004.Pla22MaleEnd stage-grade G periodontitis>= 10 teethPeri-implant mucositisZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant mucositis
F5451.S04Patient004.Pla27MaleEnd stage-grade G periodontitis>= 10 teethPeri-implant HealthZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant Health
F5451.S05Patient005.Pla22MaleLocalized Periodontitis>= 10 teethPeri-implant mucositisZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant mucositis
F5451.S06Patient005.Pla27MaleLocalized Periodontitis>= 10 teethPeri-implant mucositisZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant mucositis
F5451.S07Patient006.Pla22MaleEnd stage-grade G periodontitis>= 10 teethPeri-implant HealthZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant Health
F5451.S08Patient006.Pla27MaleEnd stage-grade G periodontitis>= 10 teethPeri-implant HealthZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant Health
F5451.S09Patient007.Pla22FemaleEnd stage-grade G periodontitis< 10 teethPeri-implant mucositisZimmerProsthesis > 1 yearBone grafted sitesPeri-implant mucositis
F5451.S10Patient007.Pla27FemaleEnd stage-grade G periodontitis< 10 teethPeri-implant HealthZimmerProsthesis > 1 yearBone grafted sitesPeri-implant Health
F5451.S11Patient008.Pla22FemaleReduced periodontium< 10 teethPeri-implant mucositisStraumannProsthesis > 1 yearBone grafted sitesPeri-implant mucositis
F5451.S12Patient008.Pla27FemaleReduced periodontium< 10 teethPeri-implant mucositisStraumannProsthesis > 1 yearBone grafted sitesPeri-implant mucositis
F5451.S13Patient009.Pla22MaleEnd stage-grade G periodontitis>= 10 teethPeri-implant mucositisNAProsthesis > 1 yearNon-bone grafted sitesPeri-implant mucositis
F5451.S14Patient009.Pla27MaleEnd stage-grade G periodontitis>= 10 teethPeri-implant HealthNAProsthesis > 1 yearNon-bone grafted sitesPeri-implant Health
F5451.S15Patient010.Pla22MaleEnd stage-grade G periodontitis>= 10 teethPeri-implant mucositisZimmerProsthesis > 1 yearBone grafted sitesPeri-implant mucositis
F5451.S16Patient010.Pla27MaleEnd stage-grade G periodontitis>= 10 teethPeri-implant HealthZimmerProsthesis > 1 yearBone grafted sitesPeri-implant Health
F5451.S17Patient011.Pla22FemaleNon-end stage-grade G Periodontitis< 10 teethPeri-implant HealthZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant Health
F5451.S18Patient011.Pla27FemaleNon-end stage-grade G Periodontitis< 10 teethPeri-implant mucositisZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant mucositis
F5451.S19Patient012.Pla22MaleNon-end stage-grade G Periodontitis< 10 teethPeri-implant HealthZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant Health
F5451.S20Patient012.Pla27MaleNon-end stage-grade G Periodontitis< 10 teethPeri-implant HealthZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant Health
F5451.S21Patient013.Pla22MaleLocalized Periodontitis>= 10 teethPeri-implant HealthZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant Health
F5451.S22Patient013.Pla27MaleLocalized Periodontitis>= 10 teethPeri-implant HealthZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant Health
F5451.S23Patient014.Pla22MaleEnd stage-grade G periodontitis>= 10 teethPeri-implant mucositisZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant mucositis
F5451.S24Patient014.Pla27MaleEnd stage-grade G periodontitis>= 10 teethPeri-implant mucositisZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant mucositis
F5451.S25Patient015.Pla22FemaleEnd stage-grade G periodontitis< 10 teethPeri-implant HealthZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant Health
F5451.S26Patient015.Pla27FemaleEnd stage-grade G periodontitis< 10 teethPeri-implant HealthZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant Health
F5451.S27Patient016.Pla22FemaleLocalized Periodontitis>= 10 teethPeri-implant HealthStraumannProsthesis < 1 yearNon-bone grafted sitesPeri-implant Health
F5451.S28Patient016.Pla27FemaleLocalized Periodontitis>= 10 teethPeri-implant HealthStraumannProsthesis < 1 yearNon-bone grafted sitesPeri-implant Health
F5451.S29Patient017.Pla22MaleReduced periodontium< 10 teethPeri-implant HealthZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant Health
F5451.S30Patient017.Pla27MaleReduced periodontium< 10 teethPeri-implant mucositisZimmerProsthesis > 1 yearNon-bone grafted sitesPeri-implant mucositis
F8254.S01Patient018.Pla22FemaleNon-end stage-grade G Periodontitis< 10 teethPeri-implant HealthZimmerProsthesis < 1 yearNon-bone grafted sitesPeri-implant Health
F8254.S02Patient018.Pla27FemaleNon-end stage-grade G Periodontitis< 10 teethPeri-implant mucositisZimmerProsthesis < 1 yearNon-bone grafted sitesPeri-implant mucositis
F8254.S03Patient020.Pla22MaleNon-end stage-grade G Periodontitis>= 10 teethPeri-implant HealthZimmerProsthesis < 1 yearNon-bone grafted sitesPeri-implant Health
F8254.S04Patient020.Pla27MaleNon-end stage-grade G Periodontitis>= 10 teethPeri-implant HealthZimmerProsthesis < 1 yearNon-bone grafted sitesPeri-implant Health
F8254.S05Patient021.Pla22FemaleReduced periodontium>= 10 teethPeri-implant mucositisStraumannProsthesis > 1 yearNon-bone grafted sitesPeri-implant mucositis
F8254.S06Patient021.Pla27FemaleReduced periodontium>= 10 teethPeri-implant mucositisStraumannProsthesis > 1 yearNon-bone grafted sitesPeri-implant mucositis
F8254.S07Patient022.Pla22MaleNon-end stage-grade G Periodontitis>= 10 teethPeri-implant HealthZimmerProsthesis < 1 yearNon-bone grafted sitesPeri-implant Health
F8254.S08Patient022.Pla27MaleNon-end stage-grade G Periodontitis>= 10 teethPeri-implant HealthZimmerProsthesis < 1 yearNon-bone grafted sitesPeri-implant Health
F8254.S09Patient023.Pla22MaleReduced periodontium>= 10 teethPeri-implant HealthStraumannProsthesis < 1 yearBone grafted sitesPeri-implant Health
F8254.S10Patient023.Pla27MaleReduced periodontium>= 10 teethPeri-implant HealthStraumannProsthesis < 1 yearBone grafted sitesPeri-implant Health
F8254.S11Patient024.Pla22FemaleEnd stage-grade G periodontitis>= 10 teethPeri-implant mucositisZimmerProsthesis < 1 yearNon-bone grafted sitesPeri-implant mucositis
F8254.S12Patient024.Pla27FemaleEnd stage-grade G periodontitis>= 10 teethPeri-implant HealthZimmerProsthesis < 1 yearNon-bone grafted sitesPeri-implant Health
F8254.S13Patient025.Pla22FemaleEnd stage-grade G periodontitis< 10 teethPeri-implant HealthZimmerProsthesis < 1 yearNon-bone grafted sitesPeri-implant Health
F8254.S14Patient025.Pla27FemaleEnd stage-grade G periodontitis< 10 teethPeri-implant HealthZimmerProsthesis < 1 yearNon-bone grafted sitesPeri-implant Health
F8254.S15Patient026.Pla22MaleLocalized Periodontitis>= 10 teethPeri-implant mucositisStraumannProsthesis < 1 yearNon-bone grafted sitesPeri-implant mucositis
F8254.S16Patient026.Pla27MaleLocalized Periodontitis>= 10 teethPeri-implant mucositisStraumannProsthesis < 1 yearNon-bone grafted sitesPeri-implant mucositis
F8254.S17Patient027.Pla22FemaleNon-end stage-grade G Periodontitis< 10 teethPeri-implant HealthStraumannProsthesis > 1 yearNon-bone grafted sitesPeri-implant Health
F8254.S18Patient027.Pla27FemaleNon-end stage-grade G Periodontitis< 10 teethPeri-implant mucositisStraumannProsthesis > 1 yearNon-bone grafted sitesPeri-implant mucositis
F8254.S19Patient028.Pla22FemaleEnd stage-grade G periodontitis< 10 teethPeri-implant HealthZimmerProsthesis > 1 yearBone grafted sitesPeri-implant Health
F8254.S20Patient028.Pla27FemaleEnd stage-grade G periodontitis< 10 teethPeri-implant HealthZimmerProsthesis > 1 yearBone grafted sitesPeri-implant Health
 
 

ASV Read Counts by Samples

#Sample IDRead Count
F5451.S166,447
F5451.S156,852
F8254.S057,027
F5451.S237,558
F5451.S228,843
F5451.S279,049
F5451.S209,099
F5451.S179,202
F5451.S219,364
F5451.S309,383
F8254.S179,531
F8254.S0710,331
F5451.S2510,429
F8254.S0910,454
F5451.S1310,561
F8254.S0610,788
F8254.S1610,959
F5451.S0611,020
F5451.S2911,054
F8254.S0211,305
F8254.S1311,339
F5451.S0511,384
F8254.S1511,449
F5451.S0311,625
F5451.S1811,987
F5451.S2612,268
F8254.S1412,335
F8254.S1812,454
F5451.S0112,481
F8254.S0112,583
F5451.S1412,911
F8254.S0813,077
F5451.S1913,095
F5451.S0813,191
F5451.S0413,481
F5451.S2813,522
F5451.S1114,120
F5451.S0214,259
F8254.S1214,425
F8254.S1915,393
F5451.S2415,489
F5451.S0715,661
F8254.S2016,131
F8254.S1117,187
F8254.S1017,389
F5451.S0917,933
F8254.S0320,273
F5451.S1021,308
F8254.S0421,816
F5451.S1224,147
 
 
 

VII. Analysis - Read Taxonomy Assignment

Read Taxonomy Assignment - Methods

 

The species-level, open-reference 16S rRNA NGS reads taxonomy assignment pipeline

Version 20210310
 

1. Raw sequences reads in FASTA format were BLASTN-searched against a combined set of 16S rRNA reference sequences. It consists of MOMD (version 0.1), the HOMD (version 15.2 http://www.homd.org/index.php?name=seqDownload&file&type=R ), HOMD 16S rRNA RefSeq Extended Version 1.1 (EXT), GreenGene Gold (GG) (http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/gold_strains_gg16S_aligned.fasta.gz) , and the NCBI 16S rRNA reference sequence set (https://ftp.ncbi.nlm.nih.gov/blast/db/16S_ribosomal_RNA.tar.gz). These sequences were screened and combined to remove short sequences (<1000nt), chimera, duplicated and sub-sequences, as well as sequences with poor taxonomy annotation (e.g., without species information). This process resulted in 1,015 from HOMD V15.22, 495 from EXT, 3,940 from GG and 18,044 from NCBI, a total of 25,120 sequences. Altogether these sequence represent a total of 15,601 oral and non-oral microbial species.

The NCBI BLASTN version 2.7.1+ (Zhang et al, 2000) was used with the default parameters. Reads with ≥ 98% sequence identity to the matched reference and ≥ 90% alignment length (i.e., ≥ 90% of the read length that was aligned to the reference and was used to calculate the sequence percent identity) were classified based on the taxonomy of the reference sequence with highest sequence identity. If a read matched with reference sequences representing more than one species with equal percent identity and alignment length, it was subject to chimera checking with USEARCH program version v8.1.1861 (Edgar 2010). Non-chimeric reads with multi-species best hits were considered valid and were assigned with a unique species notation (e.g., spp) denoting unresolvable multiple species.

2. Unassigned reads (i.e., reads with < 98% identity or < 90% alignment length) were pooled together and reads < 200 bases were removed. The remaining reads were subject to the de novo operational taxonomy unit (OTU) calling and chimera checking using the USEARCH program version v8.1.1861 (Edgar 2010). The de novo OTU calling and chimera checking was done using 98% as the sequence identity cutoff, i.e., the species-level OTU. The output of this step produced species-level de novo clustered OTUs with 98% identity. Representative reads from each of the OTUs/species were then BLASTN-searched against the same reference sequence set again to determine the closest species for these potential novel species. These potential novel species were pooled together with the reads that were signed to specie-level in the previous step, for down-stream analyses.

Reference:
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12. PubMed PMID: 20709691.

3. Designations used in the taxonomy:

	1) Taxonomy levels are indicated by these prefixes:
	
	   k__: domain/kingdom
	   p__: phylum
	   c__: class
	   o__: order
	   f__: family
	   g__: genus  
	   s__: species
	
	   Example: 
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__faecis
		
	2) Unique level identified – known species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__hominis
	
	   The above example shows some reads match to a single species (all levels are unique)
	
	3) Non-unique level identified – known species:

	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__multispecies_spp123_3
	   
	   The above example “s__multispecies_spp123_3” indicates certain reads equally match to 3 species of the 
	   genus Roseburia; the “spp123” is a temporally assigned species ID.
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__multigenus;s__multispecies_spp234_5
	   
	   The above example indicates certain reads match equally to 5 different species, which belong to multiple genera.; 
	   the “spp234” is a temporally assigned species ID.
	
	4) Unique level identified – unknown species, potential novel species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ hominis_nov_97%
	   
	   The above example indicates that some reads have no match to any of the reference sequences with 
	   sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. However this groups 
	   of reads (actually the representative read from a de novo  OTU) has 96% percent identity to 
	   Roseburia hominis, thus this is a potential novel species, closest to Roseburia hominis. 
	   (But they are not the same species).
	
	5) Multiple level identified – unknown species, potential novel species:
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ multispecies_sppn123_3_nov_96%
	
	   The above example indicates that some reads have no match to any of the reference sequences 
	   with sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. 
	   However this groups of reads (actually the representative read from a de novo  OTU) 
	   has 96% percent identity equally to 3 species in Roseburia. Thus this is no single 
	   closest species, instead this group of reads match equally to multiple species at 96%. 
	   Since they have passed chimera check so they represent a novel species. “sppn123” is a 
	   temporary ID for this potential novel species. 

 
4. The taxonomy assignment algorithm is illustrated in this flow char below:
 
 
 
 

Read Taxonomy Assignment - Result Summary *

CodeCategoryMPC=0% (>=1 read)MPC=0.01%(>=63 reads)
ATotal reads633,969633,969
BTotal assigned reads632,723632,723
CAssigned reads in species with read count < MPC02,509
DAssigned reads in samples with read count < 50000
ETotal samples5050
FSamples with reads >= 5005050
GSamples with reads < 50000
HTotal assigned reads used for analysis (B-C-D)632,723630,214
IReads assigned to single species569,152567,831
JReads assigned to multiple species50,26950,185
KReads assigned to novel species13,30212,198
LTotal number of species353223
MNumber of single species228187
NNumber of multi-species118
ONumber of novel species11428
PTotal unassigned reads1,2461,246
QChimeric reads237237
RReads without BLASTN hits161161
SOthers: short, low quality, singletons, etc.848848
A=B+P=C+D+H+Q+R+S
E=F+G
B=C+D+H
H=I+J+K
L=M+N+O
P=Q+R+S
* MPC = Minimal percent (of all assigned reads) read count per species, species with read count < MPC were removed.
* Samples with reads < 500 were removed from downstream analyses.
* The assignment result from MPC=0.1% was used in the downstream analyses.
 
 
 

Read Taxonomy Assignment - ASV Species-Level Read Counts Table

This table shows the read counts for each sample (columns) and each species identified based on the ASV sequences. The downstream analyses were based on this table.
SPIDTaxonomyF5451.S01F5451.S02F5451.S03F5451.S04F5451.S05F5451.S06F5451.S07F5451.S08F5451.S09F5451.S10F5451.S11F5451.S12F5451.S13F5451.S14F5451.S15F5451.S16F5451.S17F5451.S18F5451.S19F5451.S20F5451.S21F5451.S22F5451.S23F5451.S24F5451.S25F5451.S26F5451.S27F5451.S28F5451.S29F5451.S30F8254.S01F8254.S02F8254.S03F8254.S04F8254.S05F8254.S06F8254.S07F8254.S08F8254.S09F8254.S10F8254.S11F8254.S12F8254.S13F8254.S14F8254.S15F8254.S16F8254.S17F8254.S18F8254.S19F8254.S20
SP1Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;dentocariosa1535510000000000000010253590059055488004931618100628652385855520011652030000012337402481290510242
SP100Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sputigena000000000087000000000013917719200000002520000012600011300149103000198
SP101Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;naeslundii000000000000000000008229100000000191532000000000000000000
SP102Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;ochracea0000009310000000000000000000000000000000000000000000
SP103Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT212000000000178000000000000000000000000008013900000172198970000
SP104Bacteria;Bacteroidota;Flavobacteriia;Flavobacteriales;Weeksellaceae;Epilithonimonas;hispanica0007200000000000000000000000000008960100008100000000000
SP105Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcus;stomatis00000000983350000000000000000000000000000000000000000
SP106Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT41700001311540000000000000000000000000000000000000067300000
SP107Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Bacteroidaceae;Phocaeicola;abscessus0000000026700000000000000000000000000000000000000000
SP108Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;periodonticum000000070000000000000000000036100000000000000000440000
SP109Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;oris340054000000000000000000001073970000000000227274000000000000
SP11Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;parahaemolyticus000000001500000000000000000000000045319000227550000000000000
SP110Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;wadei363437001900000000000000000000000000105778000000000004175151070000
SP112Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;intermedia0000000005740000000000000000000000000000000000000000
SP113Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;infelix00000101000210000000000000000000000000000000000000000
SP114Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfovibrionaceae;Bilophila;wadsworthia0000000080200000000000000000000000000000000000000000
SP115Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;gingivalis00000000254800000000000000000000000000000000000000000
SP116Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;perflava0000000000000000000000000015974100000000054000000000000
SP117Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas;aeruginosa00000000000000320000560000044000000000000000000000000
SP118Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;pallens13927800000001988000000000000000000000000000000000000000
SP119Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;infantis_clade_431000000000000038200003727000000000000000000000000000000
SP12Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Novosphingobium;silvae000000000011411811501970089572121000000000000000000000000000000
SP120Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;scardovii000000000000000010513600000000000000000000000000000000
SP122Bacteria;Proteobacteria;Alphaproteobacteria;Caulobacterales;Caulobacteraceae;Brevundimonas;nasdae00000000000000000015400000036000000000000000000000000
SP123Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;loescheii0000000001240000000000000000000000000000000000000000
SP124Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;catoniae0000000000000000000000000000000000000143000000000000
SP125Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;johnsonii0000000001810000000000000000000000000000000000000000
SP126Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Filifactor;alocis0000000027300000000000000000000000000000000000000000
SP127Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Catonella;morbi2600000001981860000000000000000000000000000000000000000
SP128Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;hongkongensis000000000000000090000000075000013547500000000000000039500
SP129Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Microbacteriaceae;Microbacterium;hydrothermale00000000000000000000000000000000183400000010900000000000
SP13Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;sp. HMT18075695538000001220000000000001372141260014112390272741600121922330000148190158772894186056000
SP133Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Kocuria;palustris000000000005300239000295124000000000000000000000000000000
SP135Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;haemolysans0000470203590142000270000000000000843800312938012440402974648713846500000026029
SP136Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;sanguinis290000005400000000000000002906013400000680000055077045000000
SP137Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;aerolata0000000000000000000000000000000000000002220000000000
SP138Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus;crispatus000000000000008422812000000000000000000000000000000000
SP139Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT1360000000000000000000000000000000000000000000000885400
SP14Bacteria;Actinobacteria;Actinobacteria;Propionibacteriales;Propionibacteriaceae;Arachnia;propionica000000008113810000000000000000000000000000095100000000000
SP142Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT056000000000000000000000550000000012549000000000000000000
SP143Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sputigena000340000020000000000000000000006700000000000000000180
SP144Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT3360000000034520000000000000000000000000000000000000000
SP145Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;viscosus000000000000000000000000000000000000000000096000000
SP146Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;sinus00090000000000000000000002700000000000009400000045000
SP15Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Bergeyella;sp. HMT9000000005100000000000000001700000025300000064000000000000
SP150Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Paracoccus;yeei000000000000000000000000000000000890000000000000000
SP152Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Kingella;oralis0000001220100000000000098216000000002030001041440000000197200000
SP154Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;subflava00000000016000000000000000000000000000000343000000000
SP155Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT0570000000010000020000001900017005900000000000000000000000
SP156Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;lingnae_[Not_Validly_Published]0000000000000000149000000000000000001230007900000000000
SP157Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;aeria0000000000000000000000000000009459330000500000000000000
SP158Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Erwiniaceae;Pantoea;agglomerans009400000000000000000000000000000000000000000000000
SP16Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT1690000146733038030800000000000011400001440023728119300341378400000005480232188503000
SP161Bacteria;Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;Cardiobacterium;hominis0000000001300000000000000000000016026500000000000000000297
SP162Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Alloscardovia;omnicolens000007300000000000000000000000000000000000000000000
SP163Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;tannerae00000000442480000000000000000000000000000000000000000
SP164Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas;cedrina0000000000000000000000000000000053490000000000000000
SP165Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Megasphaera;micronuciformis1491490000000000000000000000000000000000000000039000000
SP169Bacteria;Proteobacteria;Alphaproteobacteria;Caulobacterales;Caulobacteraceae;Asticcacaulis;excentricus00069000000000000000000000000000001130000000000000000
SP17Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingobium;yanoikuyae0000000000000000000000000230000003985810000186620000000000
SP171Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;warneri0000000000000000000000000000000000000002350000000000
SP173Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Solobacterium;moorei0000000007830000000000000000000000000000000000000000
SP174Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT17100000000000000000000000000000000000000000019034000000
SP175Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;elegans0000006486000000000000000000000000000000000000000000
SP177Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Micrococcus;flavus0000000000089004910002432230000000000002900000000000000000
SP178Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-4];bacterium HMT103000000002113420000000000000000000000000000000000000000
SP179Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Dialister;invisus000000000660000000000000000000000000000000000000000
SP18Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;rogosae00000000000000000000000000137000000000068000000000000
SP180Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacteriaceae_[G-2];bacterium HMT407000000000000000690000000000000000000000000000000000
SP181Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis_subsp._dentisani_clade_05800000000000000000000000000000170000000051000000000500
SP182Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT1370006300000000000000000000000000000000000000000000590
SP183Bacteria;Synergistetes;Synergistia;Synergistales;Synergistaceae;Fretibacterium;fastidiosum0000000049000000000000000000000000000000000000000000
SP185Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT221000000000000000000000042140018800000000000000000000000
SP187Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;artemidis0000000000164000000000000000000000000000000001800002450
SP188Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;sp. HMT078000000000000000000000000000000000000000000002231860000
SP189Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT317000000006052130000000000000000000000000000000000000000
SP19Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;parainfluenzae00011000533484011348611077500012400000000000000431845599100206354287589932900003300254
SP192Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;Acidovorax;temperans000000000000000000000000000000000760000000000000000
SP193Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Paraburkholderia;fungorum0000000000000000000000000000000019324000000150000000000
SP194Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;tuberculostearicum0000000000000000006000000000000008900000000000000000
SP198Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;mutans00000000000000000000108860000000000000000000000000000
SP199Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas;fluorescens000000000000000000000000000000000650000000000000000
SP2Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;vestibularis00000000000000589740000000000000000000000000000000000
SP20Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;gordonii245630242701217400466002719312028000000000000680209200067000000180600000806718872391163452297
SP200Bacteria;Firmicutes;Clostridia;Eubacteriales;Peptostreptococcaceae;Peptoanaerobacter;[Eubacterium] yurii000000001024270000000000000000000000000000000000000000
SP203Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;capitis0000000000000000000000000000000009200000048000000000
SP204Bacteria;Firmicutes;Clostridia;Eubacteriales;Peptostreptococcaceae;Romboutsia;timonensis0000000000000000000000000000000001420000000000000000
SP205Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT376000000000690000000000000000000000000000000000000000
SP208Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Peptidiphaga;sp. HMT183098000000000000000000000000000000000000000000000000
SP209Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Olsenella;uli930000000000000000000000000000000000000000000000000
SP21Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;parvula771940304668155814478714030315915332502212746317720490334830858371741530445321183640022747001584028638986751003441220114277
SP210Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;Leptothrix;sp. HMT0250000000000000042000000000024000000000000000000000000
SP213Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Propionibacteriaceae;Cutibacterium;acnes0000000000000000003440000000000000000000000000000000
SP22Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum9301090000000690533224178690000037200019522522001720037402274490000395377610243271027971319215297611127253
SP223Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;flueggei00000500000000000000000000000001910000000000000000000
SP224Bacteria;Actinobacteria;Actinomycetia;Pseudonocardiales;Pseudonocardiaceae;Actinomycetospora;lutea0000000001230000000000000000000000000000000000000000
SP225Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;haemolyticus00000032105000000000000000000000000000000000000000000
SP226Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Tannerella;forsythia0000000001730000000000000000000000000000000000000000
SP227Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Dialister;micraerophilus000000000730000000000000000000000000000000000000000
SP228Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;maltophilum0000000012600000000000000000000000000000000000000000
SP229Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT4430000000002770000000000000000000000000000000000000000
SP23Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Eikenella;corrodens00000010500000000000000000000000798700000000083058003341051710
SP233Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oulorum0000000000100000000000000000000000000000000000000000
SP234Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;longum0050000000000000180000000000000000000000000000000000
SP235Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Paracoccus;chinensis0000000000000000001490000000000000000000000000000000
SP236Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;jejuni00000340000000000000000000000000000000000000000001320
SP237Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Erwiniaceae;Pantoea;allii0000000000000022900000000000000000000000000000000000
SP238Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;denticola0000000000000000000000000000138000000000000000000000
SP24Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Lancefieldella;parvula000180000000000025485000000190000000000062000000002458700000
SP243Bacteria;Actinobacteria;Coriobacteriia;Eggerthellales;Eggerthellaceae;Cryptobacterium;curtum0000000000000000000000000000000000000000000000005380
SP25Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sanguinis000016491990170000000001630000000080318500010203520988127003875440084865995900089758833382
SP26Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;adiacens23829000210785003050056185119407100634008011100010416285910195108000360139223471595328249603321631328500
SP27Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oralis000000001581840000000000000000000000000000000000000000
SP28Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;gracilis2464490000001332890000000000000000000055000155272000000018700021400
SP29Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Moraxellaceae;Moraxella;osloensis00109505233000076737337733117765248781251270878010100420000000318813841000058026231820000006432
SP3Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;denticola00000000190180000000000000000000000000000000000000000
SP30Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;mucilaginosa00550511210213071500223458795460001582902000010525128218201000107988516448300578493813505231150011400000
SP31Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT07400000000120000000000001000000000004800000002770028550000
SP32Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;odontolytica59841713231301082000780066531659603790000005815300000198000016613800252432262314770011012300
SP33Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus;ultunensis0000000000000008100000000000000000000000000000000000
SP34Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;sicca00000000016100000008370000000000006423300000037700267103119250000171070
SP35Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT3800000001050000000000000000000000000000000000000000000
SP36Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;anginosus000000001177470000003102370000000000820000028765700000003547327880000
SP37Bacteria;Proteobacteria;Gammaproteobacteria;Moraxellales;Moraxellaceae;Acinetobacter;johnsonii00000000031704500403006780416700001153300000002510000000000000000
SP38Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;atypica00000686000000152702841431940000014700000002690000000000000000000
SP39Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;endodontalis000000001620850000000000000000000000000000000000000000
SP4Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Parvimonas;micra000000001029133300000500000000000000000000000000000000000
SP40Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;mitis16541159718752017151097023052855142483752142461603107735110816207969000320128118527672702251712441177238506869381125448211233890160025815350141
SP41Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;concisus47696071227940000385400340000000009400000000000001619900032140000
SP42Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT064966800008527513400199141770000000080730300387840560000860562000000001460000000
SP44Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;morbillorum00000000035600000000000000000000000000066000000000000
SP45Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Parascardovia;denticolens00000000000000000000005633124386220000000000000000000000000
SP46Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;meyeri000000000000662122000157000293564776000283000000000000000271000000
SP47Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;leadbetteri0000000000803200000000000000000000000000810000000060617900
SP49Bacteria;Firmicutes;Bacilli;Lactobacillales;Aerococcaceae;Abiotrophia;defectiva000000000000000000000000000000006754700012900559101214000002762994
SP5Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;parasanguinis_clade_411134183281823027640361900059572132129964833263670441541451630381191004251751180000002718254202007325915700100
SP50Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;pasteri00000000000000000000000063002500000000037005320400000000
SP51Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT170452545000000001563150400000138000000079300000000000000000001950000
SP52Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT1750004820021795000000000000000000000000000000000000000095483669
SP53Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;melaninogenica00002200000775300000000045009600000000000008306801247610000210204
SP54Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriaceae;Pseudoramibacter;alactolyticus0000000068300000000000000000000000000000000000000000
SP55Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhizobiaceae;Agrobacterium;tumefaciens000000000046055010600036088000000000000022600008200000000000
SP56Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;parasanguinis002179000084008095656600028140000000000000000000446500114114244920000
SP57Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Bergeyella;sp. HMT322048007905900661881881021202728037000000005945000000001152160000150160031022
SP58Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Johnsonella;sp. HMT166000000004833810000000000000000000000000000000000000000
SP59Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;showae0000004100000000000000000000000000000295600000000116991850
SP6Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis_subsp._tigurinus_clade_0700000000001200000000233382000000007704000058212001492119007364960021034200
SP60Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;graevenitzii0032945801240000003580430137000000000000000000000000000000000
SP61Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT215266225000077330075382000000000000001283930000000000004400000014700
SP62Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT0610000000000000000000000000060870000000000000000000000
SP63Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT0660015729000000008350000002924000000000000000300160000000000
SP64Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;sp. HMT2310000000031880000000000000000000000000000000000000000
SP65Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Mogibacterium;vescum00000000000000000000000000000000000000000016148000000
SP67Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT9570000000006600000000000000000000000000100000000000000
SP68Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;odontolyticus000010822200001248249202000000000000000000000000000000000000
SP69Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;salivae18010900024000000000704900000000330000000000000002001930000620
SP7Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;intermedius8551170012680000000000000000014400000000000000113159029890000000000
SP70Bacteria;Bacteroidota;Flavobacteriia;Flavobacteriales;Weeksellaceae;Chryseobacterium;profundimaris0000000000000000000000000000000073750000000000000000
SP71Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oris00000000239602000000000000000000272000000000000000000000
SP72Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;sp. HMT1720000000000000000000000003941000000000000000000000000
SP73Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;dentium0000000000000000000000000000000000000000000072200000
SP74Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhizobiaceae;Agrobacterium;fabacearum00000000000000000000000000000000014300004800000000000
SP75Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;breve0003430000000000000000000000000000000000000000000000
SP76Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Ligilactobacillus;salivarius000000000000003315400010460006500000000000000000000000000
SP77Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;mucosa0000000010600000000432000000000000688322000000000016237000000
SP78Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;nanceiensis891120000000000000000000000000000000000000002500000000
SP79Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;salivarius0053833769636360861000000669200056883205601249001647444035306179760027031797003121331477700183011540000
SP8Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminococcaceae_[G-1];bacterium HMT07500000000000000000000000000000024917000000000000000000
SP80Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT30995108000205000000000000000018000000000000000000000000000
SP81Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;constellatus0000000000000009000000000000000000000000000093319580000
SP82Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;gingivalis00017666277000293027200000114000680008200001434040000091000000410108192100
SP83Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;orale142207004862130000000001520000000000000000000010800009300139000000
SP85Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;peroris00000000000000000000000000000000000000000000191970000
SP86Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Lancefieldella;rimae00180000009700000000000005800000000000000000000000000
SP87Bacteria;Proteobacteria;Gammaproteobacteria;Moraxellales;Moraxellaceae;Acinetobacter;lwoffii0029000000240006016900001170000000000002200000780000000025017
SP88Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Lautropia;mirabilis000000000192000000000000000000001054450000246478002033189500000000
SP89Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT35200000000000000000000000000000000000000002627033000000
SP90Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;chosunense000000016501023211000005810000000000000000166211671260000000004400
SP91Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis14466148815560012271000012900077000000875700572154549715664570464300160049053819710300000447226
SP92Bacteria;Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;Cardiobacterium;valvarum000000000000000000000000000000000000109147000000000000
SP93Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;histicola000002580000000034221227483000000084780000000981770000000150000000
SP94Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;israelii000000005000000000044000000000031700000108890100000000000000
SP95Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Stomatobaculum;longum00002373640000000004890000000600000000000000071000030047000000
SP96Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;periodonticum00000000000000107998000000005101402150000000000000000000000
SP97Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;socranskii000000004371120000000000000000000000000000000000000000
SP98Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Micrococcus;antarcticus00000000000210059000681100000000000011011000003700000000000
SP99Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Micrococcus;luteus00000000000000000002200000000000001350000000000000000
SPN106Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;odontolytica_nov_97.683%0000000000184176000390000000000000000000000000000000000
SPN19Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Arthrobacter;pityocampae_nov_91.587%00000000000000000000000001810009500000000000000000000
SPN26Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT175 nov_97.446%1907192400000000000000000000000000000000000000000000675119600
SPN30Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Amaricoccus;kaplicensis_nov_95.736%0000000002280000000000000000000000000000000000000000
SPN31Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;gingivalis_nov_97.860%000000000000000001040000000000000000000000000091290000
SPN32Bacteria;Proteobacteria;Alphaproteobacteria;Hyphomicrobiales;Lichenibacteriaceae;Lichenibacterium;minor_nov_95.815%0000000000000000000000000000000001690000000000000000
SPN33Bacteria;Proteobacteria;Alphaproteobacteria;Hyphomicrobiales;Lichenibacteriaceae;Lichenibacterium;minor_nov_94.541%0000000000000000000000000000000001530000000000000000
SPN34Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT137 nov_97.137%0007700000000000000000000000000000000000000000000630
SPN35Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales;Geminicoccaceae;Arboricoccus;pini_nov_88.720%0000000001330000000000000000000000000000000000000000
SPN36Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Kingella;oralis_nov_97.826%0000000000000000010400000000000000000000000070000000
SPN37Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis_nov_97.740%00000000047000000001331700000007800000000000340000000000
SPN38Bacteria;Firmicutes;Bacilli;Lactobacillales;Aerococcaceae;Abiotrophia;defectiva_nov_96.468%00000000060000000000000000000000000003300000016000000
SPN39Bacteria;Actinobacteria;Actinobacteria;Propionibacteriales;Propionibacteriaceae;Arachnia;propionica_nov_97.980%000000003174150000000000000000000000000000000000000000
SPN40Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;oris_nov_96.852%0000000000000000000000000000004561000000000000000000
SPN41Bacteria;Actinobacteria;Actinomycetia;Pseudonocardiales;Pseudonocardiaceae;Actinomycetospora;callitridis_nov_97.556%0000000001040000000000000000000000000000000000000000
SPN42Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sanguinis_nov_97.723%00000045200000000000000000370000000000000000000000000
SPN43Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;parasanguinis_clade_411_nov_97.864%00000000000000002700000000000000000402500000000000000
SPN44Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Ligilactobacillus;salivarius_nov_95.273%00000000000000203100036000000000000000000000000000000
SPN45Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;parasanguinis_clade_411_nov_97.456%000000000000700000000000000000000000000000000000000
SPN46Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;artemidis_nov_97.126%000000000660000000000000000000000000000000000000000
SPN47Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT175 nov_95.577%3825000000000000000000000000000000000000000000000000
SPN49Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;salivarius_nov_97.373%00000000000000180000000003100000000000000000001400000
SPN5Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT215 nov_97.500%00000000008326300000000000060000000000000000000000000
SPN51Bacteria;Proteobacteria;Gammaproteobacteria;Moraxellales;Moraxellaceae;Acinetobacter;johnsonii_nov_97.701%00000000000146989700000294000000000007000000000000000000
SPN61Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sanguinis_nov_97.538%0000489000000000000000000000000000000000000000000000
SPN72Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;parasanguinis_clade_411_nov_97.661%000008508200004916400070180000000003800000000000000000000
SPN82Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT137 nov_97.710%00000000000000000000048000000000000000000000000003870
SPN94Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;gordonii_nov_97.020%00108000053000000000000000000000320000002060000000000000
SPP10Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;multispecies_spp10_2154916581982139800179100045573100033727454411589144003021119031600001243271001460474814700128339396881541901204395704360527
SPP11Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp11_2000000000000000000000000000000000920000000000000000
SPP2Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp2_20000000003100141175920211052000004003514380000119105000022176006012000000
SPP3Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;multispecies_spp3_20000000000000000000000000000000000000000019500000000
SPP5Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;multispecies_spp5_300000000000000000000000000000000000000312140000000000
SPP6Bacteria;Bacteroidota;Cytophagia;Cytophagales;Spirosomaceae;Dyadobacter;multispecies_spp6_200000000000000000000000000000000010900002900000000000
SPP7Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas;multispecies_spp7_20000000000000000000000000000000038580000000000000000
SPP8Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp8_20000000000000000000000000003000000000000390000000000
 
 
Download OTU Tables at Different Taxonomy Levels
PhylumCount*: Relative**: CLR***:
ClassCount*: Relative**: CLR***:
OrderCount*: Relative**: CLR***:
FamilyCount*: Relative**: CLR***:
GenusCount*: Relative**: CLR***:
SpeciesCount*: Relative**: CLR***:
* Read count
** Relative abundance (count/total sample count)
*** Centered log ratio transformed abundance
;
 
The species listed in the table has full taxonomy and a dynamically assigned species ID specific to this report. When some reads match with the reference sequences of more than one species equally (i.e., same percent identiy and alignmnet coverage), they can't be assigned to a particular species. Instead, they are assigned to multiple species with the species notaton "s__multispecies_spp2_2". In this notation, spp2 is the dynamic ID assigned to these reads that hit multiple sequences and the "_2" at the end of the notation means there are two species in the spp2.

You can look up which species are included in the multi-species assignment, in this table below:
 
 
 
 
Another type of notation is "s__multispecies_sppn2_2", in which the "n" in the sppn2 means it's a potential novel species because all the reads in this species have < 98% idenity to any of the reference sequences. They were grouped together based on de novo OTU clustering at 98% identity cutoff. And then a representative sequence was chosed to BLASTN search against the reference database to find the closest match (but will still be < 98%). This representative sequence also matched equally to more than one species, hence the "spp" was given in the label.
 
 

Taxonomy Bar Plots for All Samples

 
 

Taxonomy Bar Plots for Individual Comparison Groups

 
 
Comparison No.Comparison NameFamiliesGeneraSpecies
Comparison 1Female vs MalePDFSVGPDFSVGPDFSVG
Comparison 2Non-end stage-grade G Periodontitis vs End stage-grade G periodontitis vs Localized Periodontitis vs Reduced periodontiumPDFSVGPDFSVGPDFSVG
Comparison 3< 10 teeth vs >= 10 teethPDFSVGPDFSVGPDFSVG
Comparison 4Peri-implant Health vs Peri-implant mucositisPDFSVGPDFSVGPDFSVG
Comparison 5Zimmer vs StraumannPDFSVGPDFSVGPDFSVG
Comparison 6Prosthesis > 1 year vs Prosthesis < 1 yearPDFSVGPDFSVGPDFSVG
Comparison 7Non-bone grafted sites vs Bone grafted sitesPDFSVGPDFSVGPDFSVG
 
 

VIII. Analysis - Alpha Diversity

 

In ecology, alpha diversity (α-diversity) is the mean species diversity in sites or habitats at a local scale. The term was introduced by R. H. Whittaker[1][2] together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites or habitats at a more local scale (alpha diversity) and the differentiation among those habitats (beta diversity).


References:
Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338. doi:10.2307/1943563
Whittaker, R. H. (1972). Evolution and Measurement of Species Diversity. Taxon, 21, 213-251. doi:10.2307/1218190

 

Alpha Diversity Analysis by Rarefaction

Diversity measures are affected by the sampling depth. Rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples. Rarefaction curves generally grow rapidly at first, as the most common species are found, but the curves plateau as only the rarest species remain to be sampled.


References:
Willis AD. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol. 2019 Oct 23;10:2407. doi: 10.3389/fmicb.2019.02407. PMID: 31708888; PMCID: PMC6819366.

 
 
 

Boxplot of Alpha-diversity Indices

The two main factors taken into account when measuring diversity are richness and evenness. Richness is a measure of the number of different kinds of organisms present in a particular area. Evenness compares the similarity of the population size of each of the species present. There are many different ways to measure the richness and evenness. These measurements are called "estimators" or "indices". Below is a diversity of 3 commonly used indices showing the values for all the samples (dots) and in groups (boxes).

 
Alpha Diversity Box Plots for All Groups
 
 
 
 
 
 
 
Alpha Diversity Box Plots for Individual Comparisons
 
Comparison 1Female vs MaleView in PDFView in SVG
Comparison 2Non-end stage-grade G Periodontitis vs End stage-grade G periodontitis vs Localized Periodontitis vs Reduced periodontiumView in PDFView in SVG
Comparison 3< 10 teeth vs >= 10 teethView in PDFView in SVG
Comparison 4Peri-implant Health vs Peri-implant mucositisView in PDFView in SVG
Comparison 5Zimmer vs StraumannView in PDFView in SVG
Comparison 6Prosthesis > 1 year vs Prosthesis < 1 yearView in PDFView in SVG
Comparison 7Non-bone grafted sites vs Bone grafted sitesView in PDFView in SVG
 
 
 

Group Significance of Alpha-diversity Indices

To test whether the alpha diversity among different comparison groups are different statisticall, we use the Kruskal Wallis H test provided the "alpha-group-significance" fucntion in the QIIME 2 "diversity" package. Kruskal Wallis H test is the non-parametric alternative to the One Way ANOVA. Non-parametric means that the test doesn’t assume your data comes from a particular distribution. The H test is used when the assumptions for ANOVA aren’t met (like the assumption of normality). It is sometimes called the one-way ANOVA on ranks, as the ranks of the data values are used in the test rather than the actual data points. The H test determines whether the medians of two or more groups are different.

Below are the Kruskal Wallis H test results for each comparison based on three different alpha diversity measures: 1) Observed species (features), 2) Shannon index, and 3) Simpson index.

 
 
Comparison 1.Female vs MaleObserved FeaturesShannon IndexSimpson Index
Comparison 2.Non-end stage-grade G Periodontitis vs End stage-grade G periodontitis vs Localized Periodontitis vs Reduced periodontiumObserved FeaturesShannon IndexSimpson Index
Comparison 3.< 10 teeth vs >= 10 teethObserved FeaturesShannon IndexSimpson Index
Comparison 4.Peri-implant Health vs Peri-implant mucositisObserved FeaturesShannon IndexSimpson Index
Comparison 5.Zimmer vs StraumannObserved FeaturesShannon IndexSimpson Index
Comparison 6.Prosthesis > 1 year vs Prosthesis < 1 yearObserved FeaturesShannon IndexSimpson Index
Comparison 7.Non-bone grafted sites vs Bone grafted sitesObserved FeaturesShannon IndexSimpson Index
 
 

IX. Analysis - Beta Diversity

 

NMDS and PCoA Plots

Beta diversity compares the similarity (or dissimilarity) of microbial profiles between different groups of samples. There are many different similarity/dissimilarity metrics. In general, they can be quantitative (using sequence abundance, e.g., Bray-Curtis or weighted UniFrac) or binary (considering only presence-absence of sequences, e.g., binary Jaccard or unweighted UniFrac). They can be even based on phylogeny (e.g., UniFrac metrics) or not (non-UniFrac metrics, such as Bray-Curtis, etc.).

For microbiome studies, species profiles of samples can be compared with the Bray-Curtis dissimilarity, which is based on the count data type. The pair-wise Bray-Curtis dissimilarity matrix of all samples can then be subject to either multi-dimensional scaling (MDS, also known as PCoA) or non-metric MDS (NMDS).

MDS/PCoA is a scaling or ordination method that starts with a matrix of similarities or dissimilarities between a set of samples and aims to produce a low-dimensional graphical plot of the data in such a way that distances between points in the plot are close to original dissimilarities.

NMDS is similar to MDS, however it does not use the dissimilarities data, instead it converts them into the ranks and use these ranks in the calculation.

In our beta diversity analysis, Bray-Curtis dissimilarity matrix was first calculated and then plotted by the PCoA and NMDS separately. Below are beta diveristy results for all groups together:

 
 
NMDS and PCoA Plots for All Groups
 
 
 
 
 

The above PCoA and NMDS plots are based on count data. The count data can also be transformed into centered log ratio (CLR) for each species. The CLR data is no longer count data and cannot be used in Bray-Curtis dissimilarity calculation. Instead CLR can be compared with Euclidean distances. When CLR data are compared by Euclidean distance, the distance is also called Aitchison distance.

Below are the NMDS and PCoA plots of the Aitchison distances of the samples:

 
 
 
 
 
 
 
NMDS and PCoA Plots for Individual Comparisons
 
 
Comparison No.Comparison NameNMDAPCoA
Bray-CurtisCLR EuclideanBray-CurtisCLR Euclidean
Comparison 1Female vs MalePDFSVGPDFSVGPDFSVGPDFSVG
Comparison 2Non-end stage-grade G Periodontitis vs End stage-grade G periodontitis vs Localized Periodontitis vs Reduced periodontiumPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 3< 10 teeth vs >= 10 teethPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 4Peri-implant Health vs Peri-implant mucositisPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 5Zimmer vs StraumannPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 6Prosthesis > 1 year vs Prosthesis < 1 yearPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 7Non-bone grafted sites vs Bone grafted sitesPDFSVGPDFSVGPDFSVGPDFSVG
 
 
 
 
 

Interactive 3D PCoA Plots - Bray-Curtis Dissimilarity

 
 
 

Interactive 3D PCoA Plots - Euclidean Distance

 
 
 

Interactive 3D PCoA Plots - Correlation Coefficients

 
 
 

Group Significance of Beta-diversity Indices

To test whether the between-group dissimilarities are significantly greater than the within-group dissimilarities, the "beta-group-significance" function provided in the QIIME 2 "diversity" package was used with PERMANOVA (permutational multivariate analysis of variance) as the group significant testing method.

Three beta diversity matrics were used: 1) Bray–Curtis dissimilarity 2) Correlation coefficient matrix , and 3) Aitchison distance (Euclidean distance between clr-transformed compositions).

 
 
Comparison 1.Female vs MaleBray–CurtisCorrelationAitchison
Comparison 2.Non-end stage-grade G Periodontitis vs End stage-grade G periodontitis vs Localized Periodontitis vs Reduced periodontiumBray–CurtisCorrelationAitchison
Comparison 3.< 10 teeth vs >= 10 teethBray–CurtisCorrelationAitchison
Comparison 4.Peri-implant Health vs Peri-implant mucositisBray–CurtisCorrelationAitchison
Comparison 5.Zimmer vs StraumannBray–CurtisCorrelationAitchison
Comparison 6.Prosthesis > 1 year vs Prosthesis < 1 yearBray–CurtisCorrelationAitchison
Comparison 7.Non-bone grafted sites vs Bone grafted sitesBray–CurtisCorrelationAitchison
 
 
 

X. Analysis - Differential Abundance

16S rRNA next generation sequencing (NGS) generates a fixed number of reads that reflect the proportion of different species in a sample, i.e., the relative abundance of species, instead of the absolute abundance. In Mathematics, measurements involving probabilities, proportions, percentages, and ppm can all be thought of as compositional data. This makes the microbiome read count data “compositional” (Gloor et al, 2017). In general, compositional data represent parts of a whole which only carry relative information (http://www.compositionaldata.com/).

The problem of microbiome data being compositional arises when comparing two groups of samples for identifying “differentially abundant” species. A species with the same absolute abundance between two conditions, its relative abundances in the two conditions (e.g., percent abundance) can become different if the relative abundance of other species change greatly. This problem can lead to incorrect conclusion in terms of differential abundance for microbial species in the samples.

When studying differential abundance (DA), the current better approach is to transform the read count data into log ratio data. The ratios are calculated between read counts of all species in a sample to a “reference” count (e.g., mean read count of the sample). The log ratio data allow the detection of DA species without being affected by percentage bias mentioned above

In this report, a compositional DA analysis tool “ANCOM” (analysis of composition of microbiomes) was used. ANCOM transforms the count data into log-ratios and thus is more suitable for comparing the composition of microbiomes in two or more populations. "ANCOM" generates a table of features with W-statistics and whether the null hypothesis is rejected. The “W” is the W-statistic, or number of features that a single feature is tested to be significantly different against. Hence the higher the "W" the more statistical sifgnificane that a feature/species is differentially abundant.


References:

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017 Nov 15;8:2224. doi: 10.3389/fmicb.2017.02224. PMID: 29187837; PMCID: PMC5695134.

Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015 May 29;26:27663. doi: 10.3402/mehd.v26.27663. PMID: 26028277; PMCID: PMC4450248.

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 

ANCOM Differential Abundance Analysis

 
ANCOM Results for Individual Comparisons
Comparison No.Comparison Name
Comparison 1.Female vs Male
Comparison 2.Non-end stage-grade G Periodontitis vs End stage-grade G periodontitis vs Localized Periodontitis vs Reduced periodontium
Comparison 3.< 10 teeth vs >= 10 teeth
Comparison 4.Peri-implant Health vs Peri-implant mucositis
Comparison 5.Zimmer vs Straumann
Comparison 6.Prosthesis > 1 year vs Prosthesis < 1 year
Comparison 7.Non-bone grafted sites vs Bone grafted sites
 
 

ANCOM-BC Differential Abundance Analysis

 

Starting with version V1.2, we also include the results of ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) (Lin and Peddada 2020). ANCOM-BC is an updated version of "ANCOM" that: (a) provides statistically valid test with appropriate p-values, (b) provides confidence intervals for differential abundance of each taxon, (c) controls the False Discovery Rate (FDR), (d) maintains adequate power, and (e) is computationally simple to implement. The bias correction (BC) addresses a challenging problem of the bias introduced by differences in the sampling fractions across samples. This bias has been a major hurdle in performing DA analysis of microbiome data. ANCOM-BC estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework.

References:

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 
ANCOM-BC Results for Individual Comparisons
 
Comparison No.Comparison Name
Comparison 1.Female vs Male
Comparison 2.Non-end stage-grade G Periodontitis vs End stage-grade G periodontitis vs Localized Periodontitis vs Reduced periodontium
Comparison 3.< 10 teeth vs >= 10 teeth
Comparison 4.Peri-implant Health vs Peri-implant mucositis
Comparison 5.Zimmer vs Straumann
Comparison 6.Prosthesis > 1 year vs Prosthesis < 1 year
Comparison 7.Non-bone grafted sites vs Bone grafted sites
 
 
 

LEfSe - Linear Discriminant Analysis Effect Size

LEfSe (Linear Discriminant Analysis Effect Size) is an alternative method to find "organisms, genes, or pathways that consistently explain the differences between two or more microbial communities" (Segata et al., 2011). Specifically, LEfSe uses rank-based Kruskal-Wallis (KW) sum-rank test to detect features with significant differential (relative) abundance with respect to the class of interest. Since it is rank-based, instead of proportional based, the differential species identified among the comparison groups is less biased (than percent abundance based).

Reference:

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011 Jun 24;12(6):R60. doi: 10.1186/gb-2011-12-6-r60. PMID: 21702898; PMCID: PMC3218848.

 
Female vs Male
 
 
 
 
 
 
 
LEfSe Results for All Comparisons
 
Comparison No.Comparison Name
Comparison 1.Female vs Male
Comparison 2.Non-end stage-grade G Periodontitis vs End stage-grade G periodontitis vs Localized Periodontitis vs Reduced periodontium
Comparison 3.< 10 teeth vs >= 10 teeth
Comparison 4.Peri-implant Health vs Peri-implant mucositis
Comparison 5.Zimmer vs Straumann
Comparison 6.Prosthesis > 1 year vs Prosthesis < 1 year
Comparison 7.Non-bone grafted sites vs Bone grafted sites
 
 

XI. Analysis - Heatmap Profile

 

Species vs Sample Abundance Heatmap for All Samples

 
 
 

Heatmaps for Individual Comparisons

 
A) Two-way clustering - clustered on both columns (Samples) and rows (organism)
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Female vs MalePDFSVGPDFSVGPDFSVG
Comparison 2Non-end stage-grade G Periodontitis vs End stage-grade G periodontitis vs Localized Periodontitis vs Reduced periodontiumPDFSVGPDFSVGPDFSVG
Comparison 3< 10 teeth vs >= 10 teethPDFSVGPDFSVGPDFSVG
Comparison 4Peri-implant Health vs Peri-implant mucositisPDFSVGPDFSVGPDFSVG
Comparison 5Zimmer vs StraumannPDFSVGPDFSVGPDFSVG
Comparison 6Prosthesis > 1 year vs Prosthesis < 1 yearPDFSVGPDFSVGPDFSVG
Comparison 7Non-bone grafted sites vs Bone grafted sitesPDFSVGPDFSVGPDFSVG
 
 
B) One-way clustering - clustered on rows (organism) only
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Female vs MalePDFSVGPDFSVGPDFSVG
Comparison 2Non-end stage-grade G Periodontitis vs End stage-grade G periodontitis vs Localized Periodontitis vs Reduced periodontiumPDFSVGPDFSVGPDFSVG
Comparison 3< 10 teeth vs >= 10 teethPDFSVGPDFSVGPDFSVG
Comparison 4Peri-implant Health vs Peri-implant mucositisPDFSVGPDFSVGPDFSVG
Comparison 5Zimmer vs StraumannPDFSVGPDFSVGPDFSVG
Comparison 6Prosthesis > 1 year vs Prosthesis < 1 yearPDFSVGPDFSVGPDFSVG
Comparison 7Non-bone grafted sites vs Bone grafted sitesPDFSVGPDFSVGPDFSVG
 
 
C) No clustering
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Female vs MalePDFSVGPDFSVGPDFSVG
Comparison 2Non-end stage-grade G Periodontitis vs End stage-grade G periodontitis vs Localized Periodontitis vs Reduced periodontiumPDFSVGPDFSVGPDFSVG
Comparison 3< 10 teeth vs >= 10 teethPDFSVGPDFSVGPDFSVG
Comparison 4Peri-implant Health vs Peri-implant mucositisPDFSVGPDFSVGPDFSVG
Comparison 5Zimmer vs StraumannPDFSVGPDFSVGPDFSVG
Comparison 6Prosthesis > 1 year vs Prosthesis < 1 yearPDFSVGPDFSVGPDFSVG
Comparison 7Non-bone grafted sites vs Bone grafted sitesPDFSVGPDFSVGPDFSVG
 
 

XII. Analysis - Network Association

To analyze the co-occurrence or co-exclusion between microbial species among different samples, network correlation analysis tools are usually used for this purpose. However, microbiome count data are compositional. If count data are normalized to the total number of counts in the sample, the data become not independent and traditional statistical metrics (e.g., correlation) for the detection of specie-species relationships can lead to spurious results. In addition, sequencing-based studies typically measure hundreds of OTUs (species) on few samples; thus, inference of OTU-OTU association networks is severely under-powered. Here we use SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues (Kurtz et al., 2015). SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. SPIEC-EASI provides two algorithms for network inferencing – 1) Meinshausen-Bühlmann's neighborhood selection (MB method) and inverse covariance selection (GLASSO method, i.e., graphical least absolute shrinkage and selection operator). This is fundamentally distinct from SparCC, which essentially estimate pairwise correlations. In addition to these two methods, we provide the results of a third method - SparCC (Sparse Correlations for Compositional Data)(Friedman & Alm 2012), which is also a method for inferring correlations from compositional data. SparCC estimates the linear Pearson correlations between the log-transformed components.


References:

Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015 May 7;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226. PMID: 25950956; PMCID: PMC4423992.

Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20. PMID: 23028285; PMCID: PMC3447976.

 

SPIEC-EASI Network Inference by Neighborhood Selection (MB Method)

 

 

 

Association Network Inference by SparCC

 

 

 
 

XIII. Disclaimer

The results of this analysis are for research purpose only. They are not intended to diagnose, treat, cure, or prevent any disease. Forsyth and FOMC are not responsible for use of information provided in this report outside the research area.

 

Copyright FOMC 2022