FOMC Service Report

16S rRNA Gene V1V3 Amplicon Sequencing

Version V1.43

Version History

The Forsyth Institute, Cambridge, MA, USA
April 10, 2023

Project ID: FOMC10104_8116


I. Project Summary

Project FOMC10104_8116 services include NGS sequencing of the V1V3 region of the 16S rRNA gene amplicons from the samples. First and foremost, please download this report, as well as the sequence raw data from the download links provided below. These links will expire after 60 days. We cannot guarantee the availability of your data after 60 days.

Full Bioinformatics analysis service was requested. We provide many analyses, starting from the raw sequence quality and noise filtering, pair reads merging, as well as chimera filtering for the sequences, using the DADA2 denosing algorithm and pipeline.

We also provide many downstream analyses such as taxonomy assignment, alpha and beta diversity analyses, and differential abundance analysis.

For taxonomy assignment, most informative would be the taxonomy barplots. We provide an interactive barplots to show the relative abundance of microbes at different taxonomy levels (from Phylum to species) that you can choose.

If you specify which groups of samples you want to compare for differential abundance, we provide both ANCOM and LEfSe differential abundance analysis.

 

II. Workflow Checklist

1.Sample Received
2.Sample Quality Evaluated
3.Sample Prepared for Sequencing
4.Next-Gen Sequencing
5.Sequence Quality Check
6.Absolute Abundance
7.Report and Raw Sequence Data Available for Download
8.Bioinformatics Analysis - Reads Processing (DADA2 Quality Trimming, Denoising, Paired Reads Merging)
9.Bioinformatics Analysis - Reads Taxonomy Assignment
10.Bioinformatics Analysis - Alpha Diversity Analysis
11.Bioinformatics Analysis - Beta Diversity Analysis
12.Bioinformatics Analysis - Differential Abundance Analysis
13.Bioinformatics Analysis - Heatmap Profile
14.Bioinformatics Analysis - Network Association
 

III. NGS Sequencing

The samples were processed and analyzed with the ZymoBIOMICS® Service: Targeted Metagenomic Sequencing (Zymo Research, Irvine, CA).

DNA Extraction: If DNA extraction was performed, one of three different DNA extraction kits was used depending on the sample type and sample volume and were used according to the manufacturer’s instructions, unless otherwise stated. The kit used in this project is marked below:

ZymoBIOMICS® DNA Miniprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS® DNA Microprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS®-96 MagBead DNA Kit (Zymo Research, Irvine, CA)
N/A (DNA Extraction Not Performed)
Elution Volume: 50µL
Additional Notes: NA

Targeted Library Preparation: The DNA samples were prepared for targeted sequencing with the Quick-16S™ NGS Library Prep Kit (Zymo Research, Irvine, CA). These primers were custom designed by Zymo Research to provide the best coverage of the 16S gene while maintaining high sensitivity. The primer sets used in this project are marked below:

Quick-16S™ Primer Set V1-V2 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V1-V3 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V3-V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V6-V8 (Zymo Research, Irvine, CA)
Other: NA
Additional Notes: NA

The sequencing library was prepared using an innovative library preparation process in which PCR reactions were performed in real-time PCR machines to control cycles and therefore limit PCR chimera formation. The final PCR products were quantified with qPCR fluorescence readings and pooled together based on equal molarity. The final pooled library was cleaned up with the Select-a-Size DNA Clean & Concentrator™ (Zymo Research, Irvine, CA), then quantified with TapeStation® (Agilent Technologies, Santa Clara, CA) and Qubit® (Thermo Fisher Scientific, Waltham, WA).

Control Samples: The ZymoBIOMICS® Microbial Community Standard (Zymo Research, Irvine, CA) was used as a positive control for each DNA extraction, if performed. The ZymoBIOMICS® Microbial Community DNA Standard (Zymo Research, Irvine, CA) was used as a positive control for each targeted library preparation. Negative controls (i.e. blank extraction control, blank library preparation control) were included to assess the level of bioburden carried by the wet-lab process.

Sequencing: The final library was sequenced on Illumina® MiSeq™ with a V3 reagent kit (600 cycles). The sequencing was performed with 10% PhiX spike-in.

Absolute Abundance Quantification*: A quantitative real-time PCR was set up with a standard curve. The standard curve was made with plasmid DNA containing one copy of the 16S gene and one copy of the fungal ITS2 region prepared in 10-fold serial dilutions. The primers used were the same as those used in Targeted Library Preparation. The equation generated by the plasmid DNA standard curve was used to calculate the number of gene copies in the reaction for each sample. The PCR input volume (2 µl) was used to calculate the number of gene copies per microliter in each DNA sample.
The number of genome copies per microliter DNA sample was calculated by dividing the gene copy number by an assumed number of gene copies per genome. The value used for 16S copies per genome is 4. The value used for ITS copies per genome is 200. The amount of DNA per microliter DNA sample was calculated using an assumed genome size of 4.64 x 106 bp, the genome size of Escherichia coli, for 16S samples, or an assumed genome size of 1.20 x 107 bp, the genome size of Saccharomyces cerevisiae, for ITS samples. This calculation is shown below:

Calculated Total DNA = Calculated Total Genome Copies × Assumed Genome Size (4.64 × 106 bp) ×
Average Molecular Weight of a DNA bp (660 g/mole/bp) ÷ Avogadro’s Number (6.022 x 1023/mole)


* Absolute Abundance Quantification is only available for 16S and ITS analyses.

The absolute abundance standard curve data can be viewed in Excel here:

The absolute abundance standard curve is shown below:

Absolute Abundance Standard Curve

 

IV. Complete Report Download

The complete report of your project, including all links in this report, can be downloaded by clicking the link provided below. The downloaded file is a compressed ZIP file and once unzipped, open the file “REPORT.html” (may only shown as "REPORT" in your computer) by double clicking it. Your default web browser will open it and you will see the exact content of this report.

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Complete report download link:

To view the report, please follow the following steps:
1.Download the .zip file from the report link above.
2.Extract all the contents of the downloaded .zip file to your desktop.
3.Open the extracted folder and find the "REPORT.html" (may shown as only "REPORT").
4.Open (double-clicking) the REPORT.html file. Your default browser will open the top age of the complete report. Within the report, there are links to view all the analyses performed for the project.

 

V. Raw Sequence Data Download

The raw NGS sequence data is available for download with the link provided below. The data is a compressed ZIP file and can be unzipped to individual sequence files. Since this is a pair-end sequencing, each of your samples is represented by two sequence files, one for READ 1, with the file extension “*_R1.fastq.gz”, another READ 2, with the file extension “*_R1.fastq.gz”. The files are in FASTQ format and are compressed. FASTQ format is a text-based data format for storing both a biological sequence and its corresponding quality scores. Most sequence analysis software will be able to open them. The Sample IDs associated with the R1 and R2 fastq files are listed in the table below:

Sample IDOriginal Sample IDRead 1 File NameRead 2 File Name
F10104.S10original sample ID herezr10104_10V1V3_R1.fastq.gzzr10104_10V1V3_R2.fastq.gz
F10104.S11original sample ID herezr10104_11V1V3_R1.fastq.gzzr10104_11V1V3_R2.fastq.gz
F10104.S12original sample ID herezr10104_12V1V3_R1.fastq.gzzr10104_12V1V3_R2.fastq.gz
F10104.S13original sample ID herezr10104_13V1V3_R1.fastq.gzzr10104_13V1V3_R2.fastq.gz
F10104.S14original sample ID herezr10104_14V1V3_R1.fastq.gzzr10104_14V1V3_R2.fastq.gz
F10104.S15original sample ID herezr10104_15V1V3_R1.fastq.gzzr10104_15V1V3_R2.fastq.gz
F10104.S16original sample ID herezr10104_16V1V3_R1.fastq.gzzr10104_16V1V3_R2.fastq.gz
F10104.S17original sample ID herezr10104_17V1V3_R1.fastq.gzzr10104_17V1V3_R2.fastq.gz
F10104.S18original sample ID herezr10104_18V1V3_R1.fastq.gzzr10104_18V1V3_R2.fastq.gz
F10104.S19original sample ID herezr10104_19V1V3_R1.fastq.gzzr10104_19V1V3_R2.fastq.gz
F10104.S01original sample ID herezr10104_1V1V3_R1.fastq.gzzr10104_1V1V3_R2.fastq.gz
F10104.S20original sample ID herezr10104_20V1V3_R1.fastq.gzzr10104_20V1V3_R2.fastq.gz
F10104.S02original sample ID herezr10104_2V1V3_R1.fastq.gzzr10104_2V1V3_R2.fastq.gz
F10104.S03original sample ID herezr10104_3V1V3_R1.fastq.gzzr10104_3V1V3_R2.fastq.gz
F10104.S04original sample ID herezr10104_4V1V3_R1.fastq.gzzr10104_4V1V3_R2.fastq.gz
F10104.S05original sample ID herezr10104_5V1V3_R1.fastq.gzzr10104_5V1V3_R2.fastq.gz
F10104.S06original sample ID herezr10104_6V1V3_R1.fastq.gzzr10104_6V1V3_R2.fastq.gz
F10104.S07original sample ID herezr10104_7V1V3_R1.fastq.gzzr10104_7V1V3_R2.fastq.gz
F10104.S08original sample ID herezr10104_8V1V3_R1.fastq.gzzr10104_8V1V3_R2.fastq.gz
F10104.S09original sample ID herezr10104_9V1V3_R1.fastq.gzzr10104_9V1V3_R2.fastq.gz
F8116.S10original sample ID herezr8116_10V1V3_R1.fastq.gzzr8116_10V1V3_R2.fastq.gz
F8116.S11original sample ID herezr8116_11V1V3_R1.fastq.gzzr8116_11V1V3_R2.fastq.gz
F8116.S12original sample ID herezr8116_12V1V3_R1.fastq.gzzr8116_12V1V3_R2.fastq.gz
F8116.S13original sample ID herezr8116_13V1V3_R1.fastq.gzzr8116_13V1V3_R2.fastq.gz
F8116.S14original sample ID herezr8116_14V1V3_R1.fastq.gzzr8116_14V1V3_R2.fastq.gz
F8116.S15original sample ID herezr8116_15V1V3_R1.fastq.gzzr8116_15V1V3_R2.fastq.gz
F8116.S16original sample ID herezr8116_16V1V3_R1.fastq.gzzr8116_16V1V3_R2.fastq.gz
F8116.S17original sample ID herezr8116_17V1V3_R1.fastq.gzzr8116_17V1V3_R2.fastq.gz
F8116.S18original sample ID herezr8116_18V1V3_R1.fastq.gzzr8116_18V1V3_R2.fastq.gz
F8116.S19original sample ID herezr8116_19V1V3_R1.fastq.gzzr8116_19V1V3_R2.fastq.gz
F8116.S01original sample ID herezr8116_1V1V3_R1.fastq.gzzr8116_1V1V3_R2.fastq.gz
F8116.S20original sample ID herezr8116_20V1V3_R1.fastq.gzzr8116_20V1V3_R2.fastq.gz
F8116.S02original sample ID herezr8116_2V1V3_R1.fastq.gzzr8116_2V1V3_R2.fastq.gz
F8116.S03original sample ID herezr8116_3V1V3_R1.fastq.gzzr8116_3V1V3_R2.fastq.gz
F8116.S04original sample ID herezr8116_4V1V3_R1.fastq.gzzr8116_4V1V3_R2.fastq.gz
F8116.S05original sample ID herezr8116_5V1V3_R1.fastq.gzzr8116_5V1V3_R2.fastq.gz
F8116.S06original sample ID herezr8116_6V1V3_R1.fastq.gzzr8116_6V1V3_R2.fastq.gz
F8116.S07original sample ID herezr8116_7V1V3_R1.fastq.gzzr8116_7V1V3_R2.fastq.gz
F8116.S08original sample ID herezr8116_8V1V3_R1.fastq.gzzr8116_8V1V3_R2.fastq.gz
F8116.S09original sample ID herezr8116_9V1V3_R1.fastq.gzzr8116_9V1V3_R2.fastq.gz

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Raw sequence data download link:

 

VI. Analysis - DADA2 Read Processing

What is DADA2?

DADA2 is a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. DADA2 identified more real variants and output fewer spurious sequences than other methods.

DADA2’s advantage is that it uses more of the data. The DADA2 error model incorporates quality information, which is ignored by all other methods after filtering. The DADA2 error model incorporates quantitative abundances, whereas most other methods use abundance ranks if they use abundance at all. The DADA2 error model identifies the differences between sequences, eg. A->C, whereas other methods merely count the mismatches. DADA2 can parameterize its error model from the data itself, rather than relying on previous datasets that may or may not reflect the PCR and sequencing protocols used in your study.

DADA2 Publication: Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016 Jul;13(7):581-3. doi: 10.1038/nmeth.3869. Epub 2016 May 23. PMID: 27214047; PMCID: PMC4927377.

DADA2 Software Package is available as an R package at : https://benjjneb.github.io/dada2/index.html

Analysis Procedures:

DADA2 pipeline includes several tools for read quality control, including quality filtering, trimming, denoising, pair merging and chimera filtering. Below are the major processing steps of DADA2:

Step 1. Read trimming based on sequence quality The quality of NGS Illumina sequences often decreases toward the end of the reads. DADA2 allows to trim off the poor quality read ends in order to improve the error model building and pair mergicing performance.

Step 2. Learn the Error Rates The DADA2 algorithm makes use of a parametric error model (err) and every amplicon dataset has a different set of error rates. The learnErrors method learns this error model from the data, by alternating estimation of the error rates and inference of sample composition until they converge on a jointly consistent solution. As in many machine-learning problems, the algorithm must begin with an initial guess, for which the maximum possible error rates in this data are used (the error rates if only the most abundant sequence is correct and all the rest are errors).

Step 3. Infer amplicon sequence variants (ASVs) based on the error model built in previous step. This step is also called sequence "denoising". The outcome of this step is a list of ASVs that are the equivalent of oligonucleotides.

Step 4. Merge paired reads. If the sequencing products are read pairs, DADA2 will merge the R1 and R2 ASVs into single sequences. Merging is performed by aligning the denoised forward reads with the reverse-complement of the corresponding denoised reverse reads, and then constructing the merged “contig” sequences. By default, merged sequences are only output if the forward and reverse reads overlap by at least 12 bases, and are identical to each other in the overlap region (but these conditions can be changed via function arguments).

Step 5. Remove chimera. The core dada method corrects substitution and indel errors, but chimeras remain. Fortunately, the accuracy of sequence variants after denoising makes identifying chimeric ASVs simpler than when dealing with fuzzy OTUs. Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a right-segment from two more abundant “parent” sequences. The frequency of chimeric sequences varies substantially from dataset to dataset, and depends on on factors including experimental procedures and sample complexity.

Results

1. Read Quality Plots NGS sequence analaysis starts with visualizing the quality of the sequencing. Below are the quality plots of the first sample for the R1 and R2 reads separately. In gray-scale is a heat map of the frequency of each quality score at each base position. The mean quality score at each position is shown by the green line, and the quartiles of the quality score distribution by the orange lines. The forward reads are usually of better quality. It is a common practice to trim the last few nucleotides to avoid less well-controlled errors that can arise there. The trimming affects the downstream steps including error model building, merging and chimera calling. FOMC uses an empirical approach to test many combinations of different trim length in order to achieve best final amplicon sequence variants (ASVs), see the next section “Optimal trim length for ASVs”.

Quality plots for all samples:

2. Optimal trim length for ASVs The final number of merged and chimera-filtered ASVs depends on the quality filtering (hence trimming) in the very beginning of the DADA2 pipeline. In order to achieve highest number of ASVs, an empirical approach was used -

  1. Create a random subset of each sample consisting of 5,000 R1 and 5,000 R2 (to reduce computation time)
  2. Trim 10 bases at a time from the ends of both R1 and R2 up to 50 bases
  3. For each combination of trimmed length (e.g., 300x300, 300x290, 290x290 etc), the trimmed reads are subject to the entire DADA2 pipeline for chimera-filtered merged ASVs
  4. The combination with highest percentage of the input reads becoming final ASVs is selected for the complete set of data

Below is the result of such operation, showing ASV percentages of total reads for all trimming combinations (1st Column = R1 lengths in bases; 1st Row = R2 lengths in bases):

R1/R2281271261251241231
32122.71%40.52%44.31%49.15%51.17%45.87%
31122.71%39.12%43.68%49.04%47.00%37.20%
30122.73%39.90%44.12%44.47%36.69%11.25%
29122.72%40.13%38.77%33.58%11.99%9.77%
28122.72%36.41%30.03%9.97%9.51%7.30%
27121.72%29.27%8.18%7.62%7.08%4.15%

Based on the above result, the trim length combination of R1 = 321 bases and R2 = 241 bases (highlighted red above), was chosen for generating final ASVs for all sequences. This combination generated highest number of merged non-chimeric ASVs and was used for downstream analyses, if requested.

3. Error plots from learning the error rates After DADA2 building the error model for the set of data, it is always worthwhile, as a sanity check if nothing else, to visualize the estimated error rates. The error rates for each possible transition (A→C, A→G, …) are shown below. Points are the observed error rates for each consensus quality score. The black line shows the estimated error rates after convergence of the machine-learning algorithm. The red line shows the error rates expected under the nominal definition of the Q-score. The ideal result would be the estimated error rates (black line) are a good fit to the observed rates (points), and the error rates drop with increased quality as expected.

Forward Read R1 Error Plot


Reverse Read R2 Error Plot

The PDF version of these plots are available here:

 

4. DADA2 Result Summary The table below shows the summary of the DADA2 analysis, tracking paired read counts of each samples for all the steps during DADA2 denoising process - including end-trimming (filtered), denoising (denoisedF, denoisedF), pair merging (merged) and chimera removal (nonchim).

Sample IDF10104.S01F10104.S02F10104.S03F10104.S04F10104.S05F10104.S06F10104.S07F10104.S08F10104.S09F10104.S10F10104.S11F10104.S12F10104.S13F10104.S14F10104.S15F10104.S16F10104.S17F10104.S18F10104.S19F10104.S20F8116.S01F8116.S02F8116.S03F8116.S04F8116.S05F8116.S06F8116.S07F8116.S08F8116.S09F8116.S10F8116.S11F8116.S12F8116.S13F8116.S14F8116.S15F8116.S16F8116.S17F8116.S18F8116.S19F8116.S20Row SumPercentage
input192,897209,874238,310315,844136,861176,259215,015239,381323,723179,172185,639285,690211,392192,363247,245314,887287,998219,866254,335215,70730,52715,98815,84615,70420,96520,59420,69918,09839,23417,77222,41722,10123,66321,21928,07519,67520,33024,13637,04021,6075,098,148100.00%
filtered175,357190,604216,744286,983124,223160,166195,282217,491294,656162,820168,938259,719191,900174,822224,845286,379261,729199,793231,255196,21630,52415,98515,84615,70020,95920,59220,69618,09239,22717,76722,41522,09723,65921,21428,07319,67320,33024,13237,02521,6054,675,53391.71%
denoisedF169,122183,862209,531278,544119,664158,005192,105214,668290,481160,061166,190256,321189,838172,541222,264283,215258,488196,639227,501193,07327,90813,69113,34513,24518,73519,34519,41716,72037,52116,65221,10020,88722,37720,11926,83018,40019,25322,80335,11720,5314,566,10989.56%
denoisedR169,453184,524210,537279,526119,192157,134191,362214,161289,168158,755165,765256,101188,984171,637221,211281,605257,301196,101226,709192,54827,15013,77913,30013,48018,53118,83818,48515,73036,68315,94320,69020,07921,75919,57626,05417,90118,58422,40934,19019,8774,544,81289.15%
merged142,696158,888185,054244,459100,427148,082179,051204,456270,403145,855155,179246,127181,365162,064210,237269,069243,524184,266212,597179,67121,23610,1479,9519,97614,74115,75015,62713,61531,84913,30317,57017,12418,28916,57922,54415,13115,60419,19830,59616,8434,169,14381.78%
nonchim61,36471,55180,811102,46445,83181,28597,382111,409156,96180,71179,304157,479113,60094,835119,357158,308140,910101,693118,57899,63212,6836,6726,7587,7349,37410,54010,0649,44519,3907,95510,39810,85112,10210,13914,3949,9789,73711,84720,39211,2302,295,14845.02%

This table can be downloaded as an Excel table below:

 

5. DADA2 Amplicon Sequence Variants (ASVs). A total of 14342 unique merged and chimera-free ASV sequences were identified, and their corresponding read counts for each sample are available in the "ASV Read Count Table" with rows for the ASV sequences and columns for sample. This read count table can be used for microbial profile comparison among different samples and the sequences provided in the table can be used to taxonomy assignment.

 

The table can be downloaded from this link:

 
 

Sample Meta Information

Download Sample Meta Information
#SampleIDSampleNameGroupGroup1
F10104.S01Human Microbiome.Day 0.1Day 0Day 0 F10104
F10104.S02Human Microbiome.Day 0.2Day 0Day 0 F10104
F10104.S03Human Microbiome.Day 0.3Day 0Day 0 F10104
F10104.S04Human Microbiome.Day 0.4Day 0Day 0 F10104
F10104.S05Human Microbiome.Day 0.5Day 0Day 0 F10104
F10104.S06Dynamic2. Day 7.URURUR+MR+LR F10104
F10104.S07Dynamic2. Day 7.MRMRUR+MR+LR F10104
F10104.S08Dynamic2. Day 7.LRLRUR+MR+LR F10104
F10104.S09Dynamic3. Day 7.URURUR+MR+LR F10104
F10104.S10Dynamic3. Day 7.MRMRUR+MR+LR F10104
F10104.S11Dynamic3. Day 7.LRLRUR+MR+LR F10104
F10104.S12Dynamic4. Day 7.URURUR+MR+LR F10104
F10104.S13Dynamic4. Day 7.MRMRUR+MR+LR F10104
F10104.S14Dynamic4. Day 7.LRLRUR+MR+LR F10104
F10104.S15Dynamic5. Day 7.URURUR+MR+LR F10104
F10104.S16Dynamic5. Day 7.MRMRUR+MR+LR F10104
F10104.S17Dynamic5. Day 7.LRLRUR+MR+LR F10104
F10104.S18Dynamic6. Day 7.URURUR+MR+LR F10104
F10104.S19Dynamic6. Day 7.MRMRUR+MR+LR F10104
F10104.S20Dynamic6. Day 7.LRLRUR+MR+LR F10104
F8116.S01Human Microbiome.Day 0.1Day 0 F8116Day 0 F8116
F8116.S02Human Microbiome.Day 0.2Day 0 F8116Day 0 F8116
F8116.S03Human Microbiome.Day 0.3Day 0 F8116Day 0 F8116
F8116.S04Human Microbiome.Day 0.4Day 0 F8116Day 0 F8116
F8116.S05Human Microbiome.Day 0.5Day 0 F8116Day 0 F8116
F8116.S06Dynamic1. Day 7.URUR F8116UR+MR+LR F8116
F8116.S07Dynamic1. Day 7.MRMR F8116UR+MR+LR F8116
F8116.S08Dynamic1. Day 7.LRLR F8116UR+MR+LR F8116
F8116.S09Dynamic2. Day 7.URUR F8116UR+MR+LR F8116
F8116.S10Dynamic2. Day 7.MRMR F8116UR+MR+LR F8116
F8116.S11Dynamic2. Day 7.LRLR F8116UR+MR+LR F8116
F8116.S12Dynamic3. Day 7.URUR F8116UR+MR+LR F8116
F8116.S13Dynamic3. Day 7.MRMR F8116UR+MR+LR F8116
F8116.S14Dynamic3. Day 7.LRLR F8116UR+MR+LR F8116
F8116.S15Dynamic4. Day 7.URUR F8116UR+MR+LR F8116
F8116.S16Dynamic4. Day 7.MRMR F8116UR+MR+LR F8116
F8116.S17Dynamic4. Day 7.LRLR F8116UR+MR+LR F8116
F8116.S18Dynamic5. Day 7.URUR F8116UR+MR+LR F8116
F8116.S19Dynamic5. Day 7.MRMR F8116UR+MR+LR F8116
F8116.S20Dynamic5. Day 7.LRLR F8116UR+MR+LR F8116
 
 

ASV Read Counts by Samples

#Sample IDRead Count
F8116.S026,672
F8116.S036,758
F8116.S047,734
F8116.S107,955
F8116.S059,374
F8116.S089,445
F8116.S179,737
F8116.S169,978
F8116.S0710,064
F8116.S1410,139
F8116.S1110,398
F8116.S0610,540
F8116.S1210,851
F8116.S2011,230
F8116.S1811,847
F8116.S1312,102
F8116.S0112,683
F8116.S1514,394
F8116.S0919,390
F8116.S1920,392
F10104.S0545,831
F10104.S0161,364
F10104.S0271,551
F10104.S1179,304
F10104.S1080,711
F10104.S0380,811
F10104.S0681,285
F10104.S1494,835
F10104.S0797,382
F10104.S2099,632
F10104.S18101,693
F10104.S04102,464
F10104.S08111,409
F10104.S13113,600
F10104.S19118,578
F10104.S15119,357
F10104.S17140,910
F10104.S09156,961
F10104.S12157,479
F10104.S16158,308
 
 
 

VII. Analysis - Read Taxonomy Assignment

Read Taxonomy Assignment - Methods

 

The species-level, open-reference 16S rRNA NGS reads taxonomy assignment pipeline

Version 20210310
 

1. Raw sequences reads in FASTA format were BLASTN-searched against a combined set of 16S rRNA reference sequences. It consists of MOMD (version 0.1), the HOMD (version 15.2 http://www.homd.org/index.php?name=seqDownload&file&type=R ), HOMD 16S rRNA RefSeq Extended Version 1.1 (EXT), GreenGene Gold (GG) (http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/gold_strains_gg16S_aligned.fasta.gz) , and the NCBI 16S rRNA reference sequence set (https://ftp.ncbi.nlm.nih.gov/blast/db/16S_ribosomal_RNA.tar.gz). These sequences were screened and combined to remove short sequences (<1000nt), chimera, duplicated and sub-sequences, as well as sequences with poor taxonomy annotation (e.g., without species information). This process resulted in 1,015 from HOMD V15.22, 495 from EXT, 3,940 from GG and 18,044 from NCBI, a total of 25,120 sequences. Altogether these sequence represent a total of 15,601 oral and non-oral microbial species.

The NCBI BLASTN version 2.7.1+ (Zhang et al, 2000) was used with the default parameters. Reads with ≥ 98% sequence identity to the matched reference and ≥ 90% alignment length (i.e., ≥ 90% of the read length that was aligned to the reference and was used to calculate the sequence percent identity) were classified based on the taxonomy of the reference sequence with highest sequence identity. If a read matched with reference sequences representing more than one species with equal percent identity and alignment length, it was subject to chimera checking with USEARCH program version v8.1.1861 (Edgar 2010). Non-chimeric reads with multi-species best hits were considered valid and were assigned with a unique species notation (e.g., spp) denoting unresolvable multiple species.

2. Unassigned reads (i.e., reads with < 98% identity or < 90% alignment length) were pooled together and reads < 200 bases were removed. The remaining reads were subject to the de novo operational taxonomy unit (OTU) calling and chimera checking using the USEARCH program version v8.1.1861 (Edgar 2010). The de novo OTU calling and chimera checking was done using 98% as the sequence identity cutoff, i.e., the species-level OTU. The output of this step produced species-level de novo clustered OTUs with 98% identity. Representative reads from each of the OTUs/species were then BLASTN-searched against the same reference sequence set again to determine the closest species for these potential novel species. These potential novel species were pooled together with the reads that were signed to specie-level in the previous step, for down-stream analyses.

Reference:
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12. PubMed PMID: 20709691.

3. Designations used in the taxonomy:

	1) Taxonomy levels are indicated by these prefixes:
	
	   k__: domain/kingdom
	   p__: phylum
	   c__: class
	   o__: order
	   f__: family
	   g__: genus  
	   s__: species
	
	   Example: 
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__faecis
		
	2) Unique level identified – known species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__hominis
	
	   The above example shows some reads match to a single species (all levels are unique)
	
	3) Non-unique level identified – known species:

	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__multispecies_spp123_3
	   
	   The above example “s__multispecies_spp123_3” indicates certain reads equally match to 3 species of the 
	   genus Roseburia; the “spp123” is a temporally assigned species ID.
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__multigenus;s__multispecies_spp234_5
	   
	   The above example indicates certain reads match equally to 5 different species, which belong to multiple genera.; 
	   the “spp234” is a temporally assigned species ID.
	
	4) Unique level identified – unknown species, potential novel species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ hominis_nov_97%
	   
	   The above example indicates that some reads have no match to any of the reference sequences with 
	   sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. However this groups 
	   of reads (actually the representative read from a de novo  OTU) has 96% percent identity to 
	   Roseburia hominis, thus this is a potential novel species, closest to Roseburia hominis. 
	   (But they are not the same species).
	
	5) Multiple level identified – unknown species, potential novel species:
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ multispecies_sppn123_3_nov_96%
	
	   The above example indicates that some reads have no match to any of the reference sequences 
	   with sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. 
	   However this groups of reads (actually the representative read from a de novo  OTU) 
	   has 96% percent identity equally to 3 species in Roseburia. Thus this is no single 
	   closest species, instead this group of reads match equally to multiple species at 96%. 
	   Since they have passed chimera check so they represent a novel species. “sppn123” is a 
	   temporary ID for this potential novel species. 

 
4. The taxonomy assignment algorithm is illustrated in this flow char below:
 
 
 
 

Read Taxonomy Assignment - Result Summary *

CodeCategoryMPC=0% (>=1 read)MPC=0.01%(>=228 reads)
ATotal reads2,295,1482,295,148
BTotal assigned reads2,289,5742,289,574
CAssigned reads in species with read count < MPC013,352
DAssigned reads in samples with read count < 50000
ETotal samples4040
FSamples with reads >= 5004040
GSamples with reads < 50000
HTotal assigned reads used for analysis (B-C-D)2,289,5742,276,222
IReads assigned to single species2,126,3612,119,173
JReads assigned to multiple species91,51691,086
KReads assigned to novel species71,69765,963
LTotal number of species778289
MNumber of single species354249
NNumber of multi-species188
ONumber of novel species40632
PTotal unassigned reads5,5745,574
QChimeric reads135135
RReads without BLASTN hits2626
SOthers: short, low quality, singletons, etc.5,4135,413
A=B+P=C+D+H+Q+R+S
E=F+G
B=C+D+H
H=I+J+K
L=M+N+O
P=Q+R+S
* MPC = Minimal percent (of all assigned reads) read count per species, species with read count < MPC were removed.
* Samples with reads < 500 were removed from downstream analyses.
* The assignment result from MPC=0.1% was used in the downstream analyses.
 
 
 

Read Taxonomy Assignment - ASV Species-Level Read Counts Table

This table shows the read counts for each sample (columns) and each species identified based on the ASV sequences. The downstream analyses were based on this table.
SPIDTaxonomyF10104.S01F10104.S02F10104.S03F10104.S04F10104.S05F10104.S06F10104.S07F10104.S08F10104.S09F10104.S10F10104.S11F10104.S12F10104.S13F10104.S14F10104.S15F10104.S16F10104.S17F10104.S18F10104.S19F10104.S20F8116.S01F8116.S02F8116.S03F8116.S04F8116.S05F8116.S06F8116.S07F8116.S08F8116.S09F8116.S10F8116.S11F8116.S12F8116.S13F8116.S14F8116.S15F8116.S16F8116.S17F8116.S18F8116.S19F8116.S20
SP1Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminococcaceae_[G-2];bacterium HMT08594110121146025542620629014313716324229822741538823322725100000005863265400443200506336
SP10Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT4981672172322887400000000000000020010000000000000000
SP100Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;concisus118160134164940003000000000000129586559429000000000000000
SP101Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Bacteroidaceae;Phocaeicola;abscessus275513475029396767486212395273025558441561205970183123857500000000000185300000490
SP102Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcus;stomatis0768711104696472286634433184095106825635336814648092840000014417116015722102562980230209256215149273
SP103Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oralis000125714266119179144004820655701151290000000000007200002800
SP104Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT301265747692408127511002015005500000000000000000000
SP105Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT864391741552095900022230023000000000000000000000000000
SP106Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;veroralis72606239300000000000000004800550000000000000000
SP107Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-7];bacterium HMT163000001701808413200594493139000000000000000000000014
SP108Bacteria;Actinobacteria;Actinomycetia;Propionibacteriales;Propionibacteriaceae;Propionibacterium;acidifaciens7162101845300000000000000000000000000000000000
SP109Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;flavescens8214626522912225340288151021042233752971619700000407424293205141222521661413681350267399670344
SP110Bacteria;Synergistetes;Synergistia;Synergistales;Synergistaceae;Fretibacterium;fastidiosum181305307470218000270000873423132026760000000000000000000
SP112Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Lautropia;mirabilis161420782866276467211617218299190301490563521231191721099210452410365600221000000009800
SP113Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;endodontalis1051351041831537200630087009516136016803890190001200000000000
SP114Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;melaninogenica273329636146320500000000000000010300370000000000000000
SP116Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;denticola3115905918494884350414019546105467226727537214318384850000000000000160
SP117Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Dialister;invisus2223474025312770608443800496241915981742437821100317000000000000000
SP118Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oulorum315181133255920334103335032430001245014107380187000000000000000
SP119Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Bergeyella;sp. HMT9070000047935161603626210026390332500000000000000000000
SP12Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum293932884352418123146986542469613463031718768880196118542506174420952323737214554352159081030401774151860303349165480271146
SP121Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Tannerella;sp. HMT80810174180167900000137000000020000000000000000000000
SP122Bacteria;Synergistetes;Synergistia;Synergistales;Synergistaceae;Fretibacterium;sp. HMT3591491208513986000000000048000000000000000000000000
SP124Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT3155664947839014010106011260241718531900000000000000000000
SP125Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;haemolytica99110741086300000000000000000000000000000000000
SP126Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;sp. HMT18010959501160120313344000255714360622900000000000000000000
SP128Bacteria;Firmicutes;Clostridia;Clostridiales;Peptococcaceae;Peptococcus;sp. HMT167156133216236530100404240000000400000000000000000000
SP129Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-1];[Eubacterium]_infirmum44637710060118704790213814871096531422326017728111932928100000216260245370254269307400196267216304414491325
SP13Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;cristatus61461082010907371274318433424015236328132581354123662512372728083412370026320000000000007500000910
SP130Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-3];bacterium HMT351030406300109105725579136054341682027908700000002100013000000020
SP132Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Tannerella;sp. HMT9162149689160002200010003015160000000000000000000000
SP133Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-8];bacterium HMT50002217010878393174150581382099111213146962161870000000165200035026000015
SP134Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Enterobacter;cloacae000001787149495669111964155836680189887553307121138124200000000000000000000
SP135Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-2];bacterium HMT0918001404194741009247804540497546687800000000120250210120003822
SP136Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;gingivalis360369246545001475935320271290352015000000255001220002600002300
SP137Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Centipeda;periodontii03503926010592471000304570470574300000000000000000000
SP138Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT2122893273404172430000000000000002270878557000000000000000
SP139Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;salivarius622975122252115705895604745321039615814055680043510541053000003111136932751549808616849684120610461026126415901513
SP14Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis77110041442161660544938011761271724865730430825480427161758974687868976283633878539550964330125135345383408254259299325309530595515371305
SP140Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;chosunense2243863725081107111658117667290210457125139495251162188097514121876206028400000000000000000
SP141Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;catoniae6409909131039571137163020216512496161173746224916920125567596800000000000000000
SP142Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT22584144134116680019000000000210000000000000000000000
SP143Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT902321001008301100000110250018035000000000000000000000
SP144Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;flueggei13029370000000200340900000000303000000000000000
SP145Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Kingella;oralis98169263142102000200000000000185120010656000000000000000
SP146Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;maltophilum7657110143831361451901331051501591939719921115813118819900000000000000000000
SP149Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT33843145109138000000000000000000000000000000000000
SP15Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Solobacterium;moorei99109118161649703208250933462742253115853715488120473406604036376013433734000716284904641137607817724639649712673594516932428
SP151Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;oralis955686470245204320038002700210000000000000000000000
SP152Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;sp. HMT23113817113226093000000018000000000000000000000000000
SP153Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sputigena25629242643721862328722102061721251825000000000000000000003700
SP154Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;vincentii00000455041192015210034744530874500000000000000000000
SP155Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Dialister;micraerophilus0001700494854495510163606293211058700000000000000000000
SP156Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;sp. HMT02055131196121158160144771273025137680033149562591539000000079219501360252097152931169424612912401527408
SP157Bacteria;Firmicutes;Mollicutes;Mycoplasmatales;Mycoplasmataceae;Mycoplasma;salivarium675043109441316018160081172618024000000000000000000000
SP158Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT346189375226349283000000000000000731631301730000000000000000
SP159Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;salivae11216817916534000020000000000008084000000000000000
SP16Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Anaeroglobus;geminatus1017813298960000210000000000045054291000000000000000
SP160Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;sp. HMT51200000470306349223898511200283347929367000000000146000000000530
SP162Bacteria;Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;Cardiobacterium;valvarum23120184246107000150050060008000000000000000000000
SP163Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT481003941170252915002124160231051123500000000000000000000
SP164Bacteria;Firmicutes;Mollicutes;Mycoplasmatales;Mycoplasmataceae;Mycoplasma;faucium7877597500001600000018000000000000000000000000
SP166Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;marshii2003152029212205187201155381091684014718814937524200000010200000670000000
SP167Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT31412717220420589000000000000000102510380000000000000000
SP169Bacteria;Firmicutes;Erysipelotrichi;Erysipelotrichales;Erysipelotrichaceae;Erysipelotrichaceae_[G-1];bacterium HMT90533331745016443623242302711012116231000000000000000000000
SP17Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sanguinis3613812305411660010861417000060050000460000000000000000
SP170Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Peptidiphaga;sp. HMT183189323712677434315050000000000000004240000000000000000000
SP171Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-9];[Eubacterium]_brachy23628635141116100800000007000000000000000000000000
SP173Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;dentocariosa5304006818693510000000000000000173000000000000000000
SP174Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;mutans28810321642312500000000000000000000000000000000000
SP175Bacteria;Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;Cardiobacterium;hominis17834145743419800000000000000015300020000000000000000
SP176Bacteria;Absconditabacteria_(SR1);Absconditabacteria_(SR1)_[C-1];Absconditabacteria_(SR1)_[O-1];Absconditabacteria_(SR1)_[F-1];Absconditabacteria_(SR1)_[G-1];bacterium HMT874116661751729600000000000000000000000000000000000
SP178Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminococcaceae_[G-1];bacterium HMT075103931061669200000003000000000000000000000000000
SP179Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;loescheii603354137267430400000095001189363051000000000000000000000
SP18Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;buccae035675508930510054467419090122274145352378311681236000000750118370929707204201170
SP180Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;sp. HMT4731091711791979900000000000000000000000000000000000
SP181Bacteria;Bacteroidetes;Bacteroidetes_[C-1];Bacteroidetes_[O-1];Bacteroidetes_[F-1];Bacteroidetes_[G-7];bacterium HMT911000205188835827061202351678245000000000000000000300
SP182Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT41769126528426517900000000000000000000000000000000000
SP183Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT33217219123613515800000000000000000000000000000000000
SP184Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;granulosa14497109221000000000000000000125081000000000000000
SP185Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT17152443210550000000000000000008054000000000000000
SP186Bacteria;Chloroflexi;Anaerolineae;Anaerolineales;Anaerolineaceae;Anaerolineae_[G-1];bacterium HMT43921382555296757731805598834406810595383000000000700000000000
SP187Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Lancefieldella;rimae76123166269890900000000917017723713194031106613410801220125139466668013947
SP188Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;anginosus50504811529692642734956525549353174327590626397221342293000000201600000000000
SP19Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;sp. HMT07820416422732910700015000001400912000000000000000000000
SP190Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT16919168200237149000100000000000015000151143000000000000000
SP192Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Stomatobaculum;longum137180301367243000000000091451880000201000000000000000
SP194Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Shuttleworthia;satelles40857479016977280779413264917731502689953200170026052000002700000
SP195Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Parvimonas;sp. HMT110314341352409177086497150000004976410000000000000000000000
SP196Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;rectus0000000081000000000000000016566423106601598315512005913814232
SP197Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;gracilis1922331523042050000000000000006100370000000000000000
SP198Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-4];bacterium HMT3550000075205259355315284597699015215670185137000000203488233324358181404117155177322191602335
SP199Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Mogibacterium;timidum7558100101940000000000000001000130000000000000000
SP2Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;oris7889451116150362501066205362356274015203715697355361301543384000000000000000
SP20Bacteria;Actinobacteria;Actinobacteria;Propionibacteriales;Propionibacteriaceae;Arachnia;propionica527457559103737600000000000000811371000000000000000000
SP200Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;haemolysans8913614717283000000000000000690000000000000000000
SP201Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp. HMT275132704834024180090161200020210001800000000000000000
SP205Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Megasphaera;micronuciformis3211782041849800000000000000000000000000000000000
SP206Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-8];bacterium HMT9550000061109172909710706212819580011912900000000000000000000
SP207Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Olsenella;sp. HMT80710118611315114800000000000000000000000000000000000
SP208Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Filifactor;alocis6501411456959146581841246113352156229174182228158175140000000180230121403000250
SP21Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;parainfluenzae531763744131644878690363109096075837438197118310000003002516924084790000821300
SP210Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Pseudoleptotrichia;goodfellowii3914715619770000000000000002600230000000000000000
SP211Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis_subsp._tigurinus_clade_070773150494014482821287719981106289511372748167322834148199419662096153616200281270285204505274820250282296236282354420280521
SP212Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-7];[Eubacterium]_yurii_subsps._yurii_&_margaretiae0000118626410700028520450114910714666888600000000000000000000
SP213Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingomonas;oligophenolica0000000000000000000000546014910711047130128125853114168626798153206491112222
SP214Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;Desulfobulbus;sp. HMT041130981091378600012130000010120191300000000000000000000
SP215Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Kingella;denitrificans8310841957900000000000000000000000000000000000
SP217Bacteria;Firmicutes;Clostridia;Eubacteriales;Peptostreptococcaceae;Peptoanaerobacter;[Eubacterium] yurii11717511220013500441581001026635580556692577000000000000000000000
SP219Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT056279266227300941286966645620001049616101543644000000000000000000
SP22Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;infelix1559599164036162611067671016892411601293710478000010100000001429609000136123
SP223Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Klebsiella;michiganensis00000978682495234372221101185231884630129947103050155363761931121400000000000000000000
SP224Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;parahaemolyticus7691128124450100014000000000000000000000000000000
SP226Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;periodonticum2181793202621890640136840000049586910816000000000000000000000
SP228Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;dianae18547012410023020191000270283820000000000000000000000
SP229Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;sp. HMT2375019717824013000000000000000000000000000000000000
SP23Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;aphrophilus5582180112514243523843013645044140470010149000000000000000000000
SP230Bacteria;Firmicutes;Bacilli;Lactobacillales;Aerococcaceae;Abiotrophia;defectiva1672481772821264823058150000000024000000000000000000000
SP231Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT2920139000000000000000000000355000000000000000
SP232Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Bergeyella;sp. HMT322543011251741390000000000000004521000000000000000000
SP234Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT8693946941073000000000000000011173888047000000000000000
SP235Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;durum34419434216212800000000000000000000000000000000000
SP236Bacteria;Gracilibacteria_(GN02);Gracilibacteria_(GN02)_[C-2];Gracilibacteria_(GN02)_[O-2];Gracilibacteria_(GN02)_[F-2];Gracilibacteria_(GN02)_[G-2];bacterium HMT873000000004981313608848170131250000000002300898436136000330
SP237Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-2];Saccharibacteria_(TM7)_[G-5];bacterium HMT35625236824247314800015060000000001981346717671000000000000000
SP238Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;aeria1901592162198500000000000000000000000000000000000
SP24Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;leadbetteri4885775307912510000060000000001726469670000000000000000
SP240Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;meyeri52859282108000003800000000000000000000000000000
SP241Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-4];bacterium HMT103370000315635275537000327269571015200000000000000000000
SP242Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-5];[Eubacterium]_saphenum123661051394500000000000000000000000000000000000
SP243Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT91935335896690600000000845088500000000000000000000
SP244Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT06466110968861558598168037392429214416562037718125521091528164115781568189824110100000002440000070011
SP246Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;sinus5460164668800027000000000231600000000000000000000
SP247Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;sp. HMT898132206187246001565510250010236125607439461189400000000000000000000
SP248Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;saburreum812641931211030000000000025000460000000000000000000
SP25Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;sp. HMT37001100057410574115604095392920234013900000000000000000000
SP250Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Mogibacterium;neglectum001211166400000000000000000000000000000000000
SP251Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Peptidiphaga;gingivicola322295441578136000000000000000440000000000000000000
SP252Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT8200000000000000000000000000164234912147759155262118228123133152335180
SP254Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;infantis_clade_431024199611000000000000000000000000000000000000
SP255Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;odontolytica62784416634410037000360000480000000000000000000000
SP256Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;sp. HMT2845237963271000700000900015400000000000000000000
SP257Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-7];bacterium HMT08100000569643491165000000002400000000000131200000000
SP258Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT90908784616500000000000000000000000000000000000
SP259Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT448879214714311160000030000000000000000000000000000
SP26Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;hofstadii276285458518314020000000000000000000000000000000000
SP260Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT170677759993200000000000000000000000000000000000
SP262Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT175743044150560000000000000001400000000000000000000
SP264Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;elegans910656591400000000000000000000000000000000000
SP265Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Coriobacteriaceae;Slackia;exigua14159931164228068114143831038320587535696000000000000000000000
SP266Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;pleuritidis1007315113294000000000000000045000000000000000000
SP27Bacteria;Absconditabacteria_(SR1);Absconditabacteria_(SR1)_[C-1];Absconditabacteria_(SR1)_[O-1];Absconditabacteria_(SR1)_[F-1];Absconditabacteria_(SR1)_[G-1];bacterium HMT345726473147501429193322462273193227594716035647913038266010832058119600000000000000000000
SP272Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT3491161471701257500045000270000021000000000000000000000
SP275Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Lancefieldella;parvula9214722525799062809995990000260033390280017000000009000000
SP276Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT1371322383900000000000000000000181000000000000000
SP277Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT47255013691614600000030440053500000000000000000000000
SP278Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Mogibacterium;vescum70460754100005000000000000000000000000000000
SP279Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Olsenella;uli740599914001213000005016012000000000000000000000
SP28Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;intermedia179114251241108205521125213378136198479017012658100212831016126389815509000518674348409342311355266291289249586420571513
SP280Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;intermedius1741732292621920000000050000000860600000000000000000
SP282Bacteria;Bacteroidetes;Bacteroidetes_[C-1];Bacteroidetes_[O-1];Bacteroidetes_[F-1];Bacteroidetes_[G-3];bacterium HMT2812017272308383121150000019370171000000000000000000000
SP284Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;mucilaginosa49685655000000000000000000000000000000000000
SP285Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;trevisanii7154109481700000000000000000000000000000000000
SP286Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Catonella;sp. HMT451425636792500000000000000000000000000000000000
SP29Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sputigena6166275106572823252116068601632531853322411012000065322000000000000000
SP296Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT47522272860140150790000019250201200000000000000000000
SP298Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT348273201252209129000000000000000007200000000000000000
SP3Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;atypica1452332303332311000234104941501990861211828129000074000000640810000270
SP30Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;gordonii3183912574722571273031434373824071642924091532432722543083282530525600000010000000000
SP301Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;cardiffensis0000076001770000000000000000000000000000000
SP302Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT223547849903300000000000000000000000000000000000
SP304Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;bacilliformis384335645000220000000500000000000000000000350
SP31Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;maculosa18019913526213511597037618210261703373124334483100820000000000000500
SP313Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;lecithinolyticum6163551003400000000000000000000000000000000000
SP315Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;heparinolyticus000000370253162300025363243368182372500000000000000000000
SP316Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Peptoniphilus;lacrimalis7007002041061428718866183621332421748616310900000000000000000000
SP317Bacteria;Gracilibacteria_(GN02);Gracilibacteria_(GN02)_[C-1];Gracilibacteria_(GN02)_[O-1];Gracilibacteria_(GN02)_[F-1];Gracilibacteria_(GN02)_[G-1];bacterium HMT872336174613400000000000000000000000000000000000
SP318Bacteria;Actinobacteria;Actinobacteria;Propionibacteriales;Propionibacteriaceae;Arachnia;rubra11015018515915800000000000000000000000000000000000
SP319Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT134172357478000000000000000990000000000000000000
SP32Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT215459164300272227000000000000000390000000000000000000
SP320Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Johnsonella;ignava94102821389200000000000000000000000000000000000
SP325Bacteria;Gracilibacteria_(GN02);Gracilibacteria_(GN02)_[C-1];Gracilibacteria_(GN02)_[O-1];Gracilibacteria_(GN02)_[F-1];Gracilibacteria_(GN02)_[G-1];bacterium HMT871263656733500030000000000000000000000000000000
SP329Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT347554637507000000000000000000000000000000000000
SP33Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;hongkongensis297298365599451000000300000000190157209138128000000000000000
SP332Bacteria;Actinobacteria;Coriobacteriia;Eggerthellales;Eggerthellaceae;Cryptobacterium;curtum757368534300050000000000000000000000000000000
SP34Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;timonensis04900003744017230830904513704300000000000000000000
SP343Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;micans7766131927300000000000000000000000000000000000
SP35Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;mitis201124562298364215345588143208261688588561097755615349908548608210117198827113471529511106275627745181654604674073511037337248655372861623321610405
SP352Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;sp. HMT2474973761424800000000000000000000000000000000000
SP37Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;parvula1255113411402282950474147337215112480593512534199956712742995989335132782420000014602900210210112520300149205
SP4Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Eikenella;corrodens7516317318626007520581073864411110436976638400000000000000000000
SP40Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT3369084981791290000000000018002300000000000000000000
SP41Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;umeaense3371721550004235364343651017710100140000000000000000000000
SP42Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;gingivalis9937888256000000000000000000000000000002900000
SP43Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-4];bacterium HMT36900410048152109907429441651345920516005496000000336053546409737000318167
SP44Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;pasteri2876929607664880001410000002071007157530460000000000000000
SP45Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;denticola96112771209213813539146155122127699314412188206632700000000000000000000
SP46Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-2];bacterium HMT3500606416935000000000000000000420000000000000000
SP47Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;sicca76018001284301611802401680189288953609199228559240242185864340100000000530000039003200
SP48Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;histicola40540546583339200000000000000000000000000000000000
SP49Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;segnis0559033073563111719105646119052102585161204151034332900000348076675309299549383119296412256231432375
SP5Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;buccalis61075578410515771400000000202500362400101670000000000000000
SP50Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;subflava2242243202621572302625395350557177288628316615410053582520018000001130000064410000
SP51Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;gingivalis56863253782636800000000000060140118000000000000000000
SP52Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;naeslundii444311912151360000700000000000133000000000000000000
SP53Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Tannerella;sp. HMT28626718619227911000000000000000097006262000000000000000
SP54Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Tannerella;serpentiformis187665840000000000000000056000000000000000000
SP55Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;mucosa73723491543228478621233196102252312262075216179218330241270300000000000000000000
SP56Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonellaceae_[G-1];bacterium HMT15510915921222814100000000000000000000000000000000000
SP57Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT30033434638863234804122965126264209917136413941455134859956533615217115461000000000000000
SP58Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Alloprevotella;tannerae50864776611245200190017571319514312200713295239261117000000000000000
SP59Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Klebsiella;aerogenes000002694817081576623923202115942115348755954412962859913607110429043426623258200000000000000000000
SP6Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum_subsp._vincentii20526650648626126440917501580018710514720514517400000000000000000000
SP60Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;sp. HMT20319132642826511100000000000000000000000000000000000
SP61Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;oralis_subsp._dentisani_clade_05889518171127137563912682154108017531447112852568888191313881479119214201582000000000000000000300
SP62Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;orale5751174842989302271200000092839310500000000000000000000
SP63Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;adiacens52660968510603041176140695316867637191096762693143873368650656645359014715906832026561840580796339000
SP65Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;Ottowia;sp. HMT894025391306000127005900204003300000001910077400000000000
SP66Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT13814454528353351049570767249110116981191266816012300000000000000000000
SP67Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;morbillorum31129735639812349116381961501490886951681455015371624106202388110083168105004666782910676
SP68Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;matruchotii462458622718347000000000000000012100329000000000000000
SP69Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT317279408289463234001440004762000000000355695000000000000000
SP7Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;sp. HMT204141298266300132000000000000000180000000000000000000
SP70Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT3923264025096252860000030000000000668500000000000000000
SP71Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Tannerella;forsythia1221981432461981471118627622553289107176215158239222306275560001049450105620557941898581648840
SP72Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT2191151291061487700000000000000000000000000000000000
SP73Bacteria;Proteobacteria;Gammaproteobacteria;Xanthomonadales;Xanthomonadaceae;Stenotrophomonas;maltophilia00000000000000000000000002233954285141249491495190111042420305786198516924402950
SP74Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Scardovia;wiggsiae817770890149361200000000000000062430290000000000000000
SP76Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;artemidis3975104575400000000000000000000000000000000000
SP77Bacteria;Synergistetes;Synergistia;Synergistales;Synergistaceae;Fretibacterium;sp. HMT36028424240242719045159881509914286839088158127011952000470001600220000000220
SP79Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Catonella;morbi1442132552341544735344885203414128073684796875554625035996054101700000000000000000
SP8Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;socranskii146158672351642022883903043773302002183061174222762423291970000000720081518600050016769
SP80Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Treponemataceae;Treponema;sp. HMT27039516981252017391617440160021354101200000000000000000000
SP81Bacteria;Bacteroidetes;Bacteroidetes_[C-1];Bacteroidetes_[O-1];Bacteroidetes_[F-1];Bacteroidetes_[G-3];bacterium HMT2800009013932221876536719751928362183960981540261348700000111113014201181211143930785153127112229
SP82Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;saccharolytica228174186278122891491055420216316617917451139227221941675200000000000000000032
SP83Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT957608114589711101410740760372304160305147000161440000000000000550
SP84Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;nigrescens1636247858465066155504301311152202448657681741137200000000000000000000
SP85Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT2217667421005000000000000000000000000000000000000
SP86Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Bergeyella;sp. HMT900135140199183830705700493132705065717071573400000210000000000000
SP87Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;elongata73721909291477615330320113371631043617593811549634476510318756828139181648000938117306201812774924254914851900144276205
SP89Bacteria;Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;showae171174294321113226519918312668326072924451111174615022825163723333558193500000383705286386421207211629431454279302341821510
SP9Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidales_[F-2];Bacteroidales_[G-2];bacterium HMT27496169243232184225389202643477290534300406481577799348692536000001701719719411213815525816915779166160307181
SP90Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;constellatus115878568108744302431078700573833294900000000000000050061310
SP92Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-3];bacterium HMT100181157118279117004000060610000000000000000000000000
SP93Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Parvimonas;micra68583111931759673205270159117751420024615426656132137733824119413763528148682100184339020005597057
SP94Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;noxia2613534606093690000000000000002090000000000000000000
SP95Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;wadei70110927939024800000000000000017000427488000000000000000
SP96Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;endodontalis2472922543871933316443923893383341782892911643322832586723480422300550099000934360031828941
SP98Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;ochracea17914520422882000000013080000000000000000000000000
SP99Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Aggregatibacter;sp. HMT4585257194233190000000000000000198000400000000010000000
SPN103Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT137 nov_95.611%166059674000000000000000000000000000000000000
SPN108Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Bergeyella;zoohelcum_nov_92.871%3346594394162938931673564119443242141311622139433245267275662954500000000000000000000
SPN116Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT305 nov_94.477%00000300260026000162962005000000000000000000000
SPN12Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingomonas;jeddahensis_nov_97.234%0000000000000000000024430502050100304291157348039083247311306335463571004749
SPN128Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;Ottowia;sp. HMT894 nov_96.988%75821434359129513016285748214891079906801718524900000000000000000000
SPN129Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Veillonellaceae_[G-1];bacterium HMT150 nov_97.260%292880683100000000000000000000000000000000000
SPN13Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;dianae_nov_97.533%45473201400002200000253532323400000000000000000000
SPN140Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sp. HMT863 nov_97.972%346443662900000000000000000000000000000000000
SPN152Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT064 nov_93.945%00000002600106000009800000000000000000000000
SPN161Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT300 nov_97.638%192432800471406632023013841048683900000000000000000000
SPN217Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sanguinis_nov_97.893%718151040000130000004000001781211067600000520052000000
SPN24Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;infelix_nov_97.426%281401970130016021019226651624500000000000000000000
SPN246Bacteria;Absconditabacteria_(SR1);Absconditabacteria_(SR1)_[C-1];Absconditabacteria_(SR1)_[O-1];Absconditabacteria_(SR1)_[F-1];Absconditabacteria_(SR1)_[G-1];bacterium HMT345 nov_97.934%00000416514624676406740253230207293114889029636926100000000000000000000
SPN274Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;zoogleoformans_nov_96.578%0000000000000000000000000015402330115023145210141189135290311
SPN282Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Peptidiphaga;gingivicola_nov_96.571%10190218636700000000000000000000000000000000000
SPN286Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-3];bacterium HMT351 nov_92.871%0000000010066550000000000000052751291400821791431489285107151106161
SPN298Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp. HMT305 nov_93.898%00000095012312531313872095946417212600000000000000000000
SPN310Bacteria;Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;Cardiobacterium;hominis_nov_88.719%14116918916111700000000000000000000000000000000000
SPN322Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT137 nov_97.137%89122891369100000000000000000160206000000000000000
SPN34Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;flueggei_nov_97.701%386364596900000000000000000000000000000000000
SPN341Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT171 nov_96.929%109551191146600000000000000000000000000000000000
SPN353Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;nanceiensis_nov_91.353%69641071385000000000000000000000000000000000000
SPN365Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;dianae_nov_97.909%000602400383933000443751068000000000000000000000
SPN375Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;sp. HMT138 nov_97.524%0005004032272900643180223970000000000000000000000
SPN386Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;wadei_nov_97.996%195198925000000000000000000000000000000000000
SPN397Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;durum_nov_97.787%413507900000000000000001690000000000000000000
SPN42Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;infelix_nov_96.703%31261801617530053943604845608633354100000000000000000000
SPN45Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;gingivalis_nov_91.051%10390093000000000000000000000000000000000000
SPN56Bacteria;Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;Cardiobacterium;hominis_nov_96.737%605830804600000000000000000000000000000000000
SPN68Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Selenomonas;noxia_nov_97.615%130000000000000000000013201210000000000000000
SPN80Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;gordonii_nov_96.303%018000145144230740000014002200000000000000000000
SPN92Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;catoniae_nov_97.719%435711235000000000000005000000000000000000000
SPP10Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-4];multispecies_spp10_2000000414303916000373927108401700000000000000000000
SPP14Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;multispecies_spp14_2371935054076602733666831917629240039821202792742253069317943349156634953565114279899186611434801147871644105594853736056352389410565001065580
SPP16Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp16_2151161031214800000000000000000000000000000000000
SPP17Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;multispecies_spp17_21757714649147000000000002200000000000000000000000
SPP18Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Tannerella;multispecies_spp18_2180298281460166000000000000000006800000000000000000
SPP2Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;multigenus;multispecies_spp2_200000199816571116778022451832409792361019655369141244326300000000000000000000
SPP6Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;multispecies_spp6_2057654906003721000000007000000000000000000000
SPP9Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;multispecies_spp9_22802953000039462200001732027000000000000000000000
 
 
Download OTU Tables at Different Taxonomy Levels
PhylumCount*: Relative**: CLR***:
ClassCount*: Relative**: CLR***:
OrderCount*: Relative**: CLR***:
FamilyCount*: Relative**: CLR***:
GenusCount*: Relative**: CLR***:
SpeciesCount*: Relative**: CLR***:
* Read count
** Relative abundance (count/total sample count)
*** Centered log ratio transformed abundance
;
 
The species listed in the table has full taxonomy and a dynamically assigned species ID specific to this report. When some reads match with the reference sequences of more than one species equally (i.e., same percent identiy and alignmnet coverage), they can't be assigned to a particular species. Instead, they are assigned to multiple species with the species notaton "s__multispecies_spp2_2". In this notation, spp2 is the dynamic ID assigned to these reads that hit multiple sequences and the "_2" at the end of the notation means there are two species in the spp2.

You can look up which species are included in the multi-species assignment, in this table below:
 
 
 
 
Another type of notation is "s__multispecies_sppn2_2", in which the "n" in the sppn2 means it's a potential novel species because all the reads in this species have < 98% idenity to any of the reference sequences. They were grouped together based on de novo OTU clustering at 98% identity cutoff. And then a representative sequence was chosed to BLASTN search against the reference database to find the closest match (but will still be < 98%). This representative sequence also matched equally to more than one species, hence the "spp" was given in the label.
 
 

Taxonomy Bar Plots for All Samples

 
 

Taxonomy Bar Plots for Individual Comparison Groups

 
 
Comparison No.Comparison NameFamiliesGeneraSpecies
Comparison 1Day 0 vs UR vs MR vs LRPDFSVGPDFSVGPDFSVG
Comparison 2Day 0 vs URPDFSVGPDFSVGPDFSVG
Comparison 3Day 0 vs MRPDFSVGPDFSVGPDFSVG
Comparison 4Day 0 vs LRPDFSVGPDFSVGPDFSVG
Comparison 5UR vs MR vs LRPDFSVGPDFSVGPDFSVG
Comparison 6Day 0 F10104 vs Day 0 F8116PDFSVGPDFSVGPDFSVG
Comparison 7Day 0 F10104 vs UR+MR+LR F10104 vs Day 0 F8116 vs UR+MR+LR F8116PDFSVGPDFSVGPDFSVG
 
 

VIII. Analysis - Alpha Diversity

 

In ecology, alpha diversity (α-diversity) is the mean species diversity in sites or habitats at a local scale. The term was introduced by R. H. Whittaker[1][2] together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites or habitats at a more local scale (alpha diversity) and the differentiation among those habitats (beta diversity).


References:
Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338. doi:10.2307/1943563
Whittaker, R. H. (1972). Evolution and Measurement of Species Diversity. Taxon, 21, 213-251. doi:10.2307/1218190

 

Alpha Diversity Analysis by Rarefaction

Diversity measures are affected by the sampling depth. Rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples. Rarefaction curves generally grow rapidly at first, as the most common species are found, but the curves plateau as only the rarest species remain to be sampled.


References:
Willis AD. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol. 2019 Oct 23;10:2407. doi: 10.3389/fmicb.2019.02407. PMID: 31708888; PMCID: PMC6819366.

 
 
 

Boxplot of Alpha-diversity Indices

The two main factors taken into account when measuring diversity are richness and evenness. Richness is a measure of the number of different kinds of organisms present in a particular area. Evenness compares the similarity of the population size of each of the species present. There are many different ways to measure the richness and evenness. These measurements are called "estimators" or "indices". Below is a diversity of 3 commonly used indices showing the values for all the samples (dots) and in groups (boxes).

 
Alpha Diversity Box Plots for All Groups
 
 
 
 
 
 
 
Alpha Diversity Box Plots for Individual Comparisons
 
Comparison 1Day 0 vs UR vs MR vs LRView in PDFView in SVG
Comparison 2Day 0 vs URView in PDFView in SVG
Comparison 3Day 0 vs MRView in PDFView in SVG
Comparison 4Day 0 vs LRView in PDFView in SVG
Comparison 5UR vs MR vs LRView in PDFView in SVG
Comparison 6Day 0 F10104 vs Day 0 F8116View in PDFView in SVG
Comparison 7Day 0 F10104 vs UR+MR+LR F10104 vs Day 0 F8116 vs UR+MR+LR F8116View in PDFView in SVG
 
 
 

Group Significance of Alpha-diversity Indices

To test whether the alpha diversity among different comparison groups are different statistically, we use the Kruskal Wallis H test provided the "alpha-group-significance" fucntion in the QIIME 2 "diversity" package. Kruskal Wallis H test is the non-parametric alternative to the One Way ANOVA. Non-parametric means that the test doesn’t assume your data comes from a particular distribution. The H test is used when the assumptions for ANOVA aren’t met (like the assumption of normality). It is sometimes called the one-way ANOVA on ranks, as the ranks of the data values are used in the test rather than the actual data points. The H test determines whether the medians of two or more groups are different.

Below are the Kruskal Wallis H test results for each comparison based on three different alpha diversity measures: 1) Observed species (features), 2) Shannon index, and 3) Simpson index.

 
 
Comparison 1.Day 0 vs UR vs MR vs LRObserved FeaturesShannon IndexSimpson Index
Comparison 2.Day 0 vs URObserved FeaturesShannon IndexSimpson Index
Comparison 3.Day 0 vs MRObserved FeaturesShannon IndexSimpson Index
Comparison 4.Day 0 vs LRObserved FeaturesShannon IndexSimpson Index
Comparison 5.UR vs MR vs LRObserved FeaturesShannon IndexSimpson Index
Comparison 6.Day 0 F10104 vs Day 0 F8116Observed FeaturesShannon IndexSimpson Index
Comparison 7.Day 0 F10104 vs UR+MR+LR F10104 vs Day 0 F8116 vs UR+MR+LR F8116Observed FeaturesShannon IndexSimpson Index
 
 

IX. Analysis - Beta Diversity

 

NMDS and PCoA Plots

Beta diversity compares the similarity (or dissimilarity) of microbial profiles between different groups of samples. There are many different similarity/dissimilarity metrics. In general, they can be quantitative (using sequence abundance, e.g., Bray-Curtis or weighted UniFrac) or binary (considering only presence-absence of sequences, e.g., binary Jaccard or unweighted UniFrac). They can be even based on phylogeny (e.g., UniFrac metrics) or not (non-UniFrac metrics, such as Bray-Curtis, etc.).

For microbiome studies, species profiles of samples can be compared with the Bray-Curtis dissimilarity, which is based on the count data type. The pair-wise Bray-Curtis dissimilarity matrix of all samples can then be subject to either multi-dimensional scaling (MDS, also known as PCoA) or non-metric MDS (NMDS).

MDS/PCoA is a scaling or ordination method that starts with a matrix of similarities or dissimilarities between a set of samples and aims to produce a low-dimensional graphical plot of the data in such a way that distances between points in the plot are close to original dissimilarities.

NMDS is similar to MDS, however it does not use the dissimilarities data, instead it converts them into the ranks and use these ranks in the calculation.

In our beta diversity analysis, Bray-Curtis dissimilarity matrix was first calculated and then plotted by the PCoA and NMDS separately. Below are beta diveristy results for all groups together:

 
 
NMDS and PCoA Plots for All Groups
 
 
 
 
 

The above PCoA and NMDS plots are based on count data. The count data can also be transformed into centered log ratio (CLR) for each species. The CLR data is no longer count data and cannot be used in Bray-Curtis dissimilarity calculation. Instead CLR can be compared with Euclidean distances. When CLR data are compared by Euclidean distance, the distance is also called Aitchison distance.

Below are the NMDS and PCoA plots of the Aitchison distances of the samples:

 
 
 
 
 
 
 
NMDS and PCoA Plots for Individual Comparisons
 
 
Comparison No.Comparison NameNMDAPCoA
Bray-CurtisCLR EuclideanBray-CurtisCLR Euclidean
Comparison 1Day 0 vs UR vs MR vs LRPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 2Day 0 vs URPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 3Day 0 vs MRPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 4Day 0 vs LRPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 5UR vs MR vs LRPDFSVGPDFSVGPDFSVGPDFSVG
Comparison 6Day 0 F10104 vs Day 0 F8116PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 7Day 0 F10104 vs UR+MR+LR F10104 vs Day 0 F8116 vs UR+MR+LR F8116PDFSVGPDFSVGPDFSVGPDFSVG
 
 
 
 
 

Interactive 3D PCoA Plots - Bray-Curtis Dissimilarity

 
 
 

Interactive 3D PCoA Plots - Euclidean Distance

 
 
 

Interactive 3D PCoA Plots - Correlation Coefficients

 
 
 

Group Significance of Beta-diversity Indices

To test whether the between-group dissimilarities are significantly greater than the within-group dissimilarities, the "beta-group-significance" function provided in the QIIME 2 "diversity" package was used with PERMANOVA (permutational multivariate analysis of variance) as the group significant testing method.

Three beta diversity matrics were used: 1) Bray–Curtis dissimilarity 2) Correlation coefficient matrix , and 3) Aitchison distance (Euclidean distance between clr-transformed compositions).

 
 
Comparison 1.Day 0 vs UR vs MR vs LRBray–CurtisCorrelationAitchison
Comparison 2.Day 0 vs URBray–CurtisCorrelationAitchison
Comparison 3.Day 0 vs MRBray–CurtisCorrelationAitchison
Comparison 4.Day 0 vs LRBray–CurtisCorrelationAitchison
Comparison 5.UR vs MR vs LRBray–CurtisCorrelationAitchison
Comparison 6.Day 0 F10104 vs Day 0 F8116Bray–CurtisCorrelationAitchison
Comparison 7.Day 0 F10104 vs UR+MR+LR F10104 vs Day 0 F8116 vs UR+MR+LR F8116Bray–CurtisCorrelationAitchison
 
 
 

X. Analysis - Differential Abundance

16S rRNA next generation sequencing (NGS) generates a fixed number of reads that reflect the proportion of different species in a sample, i.e., the relative abundance of species, instead of the absolute abundance. In Mathematics, measurements involving probabilities, proportions, percentages, and ppm can all be thought of as compositional data. This makes the microbiome read count data “compositional” (Gloor et al, 2017). In general, compositional data represent parts of a whole which only carry relative information (http://www.compositionaldata.com/).

The problem of microbiome data being compositional arises when comparing two groups of samples for identifying “differentially abundant” species. A species with the same absolute abundance between two conditions, its relative abundances in the two conditions (e.g., percent abundance) can become different if the relative abundance of other species change greatly. This problem can lead to incorrect conclusion in terms of differential abundance for microbial species in the samples.

When studying differential abundance (DA), the current better approach is to transform the read count data into log ratio data. The ratios are calculated between read counts of all species in a sample to a “reference” count (e.g., mean read count of the sample). The log ratio data allow the detection of DA species without being affected by percentage bias mentioned above

In this report, a compositional DA analysis tool “ANCOM” (analysis of composition of microbiomes) was used. ANCOM transforms the count data into log-ratios and thus is more suitable for comparing the composition of microbiomes in two or more populations. "ANCOM" generates a table of features with W-statistics and whether the null hypothesis is rejected. The “W” is the W-statistic, or number of features that a single feature is tested to be significantly different against. Hence the higher the "W" the more statistical sifgnificant that a feature/species is differentially abundant.


References:

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017 Nov 15;8:2224. doi: 10.3389/fmicb.2017.02224. PMID: 29187837; PMCID: PMC5695134.

Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015 May 29;26:27663. doi: 10.3402/mehd.v26.27663. PMID: 26028277; PMCID: PMC4450248.

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 

ANCOM Differential Abundance Analysis

 
ANCOM Results for Individual Comparisons
Comparison No.Comparison Name
Comparison 1.Day 0 vs UR vs MR vs LR
Comparison 2.Day 0 vs UR
Comparison 3.Day 0 vs MR
Comparison 4.Day 0 vs LR
Comparison 5.UR vs MR vs LR
Comparison 6.Day 0 F10104 vs Day 0 F8116
Comparison 7.Day 0 F10104 vs UR+MR+LR F10104 vs Day 0 F8116 vs UR+MR+LR F8116
 
 

ANCOM-BC2 Differential Abundance Analysis

 

Starting with version V1.2, we include the results of ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) (Lin and Peddada 2020). ANCOM-BC is an updated version of "ANCOM" that:
(a) provides statistically valid test with appropriate p-values,
(b) provides confidence intervals for differential abundance of each taxon,
(c) controls the False Discovery Rate (FDR),
(d) maintains adequate power, and
(e) is computationally simple to implement.

The bias correction (BC) addresses a challenging problem of the bias introduced by differences in the sampling fractions across samples. This bias has been a major hurdle in performing DA analysis of microbiome data. ANCOM-BC estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework.

Starting with version V1.43, ANCOM-BC2 is used instead of ANCOM-BC, So that multiple pairwise directional test can be performed (if there are more than two gorups in a comparison). When performning pairwise directional test, the mixed directional false discover rate (mdFDR) is taken into account. The mdFDR is the combination of false discovery rate due to multiple testing, multiple pairwise comparisons, and directional tests within each pairwise comparison. The mdFDR is adopted from (Guo, Sarkar, and Peddada 2010; Grandhi, Guo, and Peddada 2016). For more detail explanation and additional features of ANCOM-BC2 please see author's documentation.

References:

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

Guo W, Sarkar SK, Peddada SD. Controlling false discoveries in multidimensional directional decisions, with applications to gene expression data on ordered categories. Biometrics. 2010 Jun;66(2):485-92. doi: 10.1111/j.1541-0420.2009.01292.x. Epub 2009 Jul 23. PMID: 19645703; PMCID: PMC2895927.

Grandhi A, Guo W, Peddada SD. A multiple testing procedure for multi-dimensional pairwise comparisons with application to gene expression studies. BMC Bioinformatics. 2016 Feb 25;17:104. doi: 10.1186/s12859-016-0937-5. PMID: 26917217; PMCID: PMC4768411.

 
 
ANCOM-BC Results for Individual Comparisons
 
Comparison No.Comparison Name
Comparison 1.Day 0 vs UR vs MR vs LR
Comparison 2.Day 0 vs UR
Comparison 3.Day 0 vs MR
Comparison 4.Day 0 vs LR
Comparison 5.UR vs MR vs LR
Comparison 6.Day 0 F10104 vs Day 0 F8116
Comparison 7.Day 0 F10104 vs UR+MR+LR F10104 vs Day 0 F8116 vs UR+MR+LR F8116
 
 
 

LEfSe - Linear Discriminant Analysis Effect Size

LEfSe (Linear Discriminant Analysis Effect Size) is an alternative method to find "organisms, genes, or pathways that consistently explain the differences between two or more microbial communities" (Segata et al., 2011). Specifically, LEfSe uses rank-based Kruskal-Wallis (KW) sum-rank test to detect features with significant differential (relative) abundance with respect to the class of interest. Since it is rank-based, instead of proportional based, the differential species identified among the comparison groups is less biased (than percent abundance based).

Reference:

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011 Jun 24;12(6):R60. doi: 10.1186/gb-2011-12-6-r60. PMID: 21702898; PMCID: PMC3218848.

 
Day 0 vs UR vs MR vs LR
 
 
 
 
 
 
 
LEfSe Results for All Comparisons
 
Comparison No.Comparison Name
Comparison 1.Day 0 vs UR vs MR vs LR
Comparison 2.Day 0 vs UR
Comparison 3.Day 0 vs MR
Comparison 4.Day 0 vs LR
Comparison 5.UR vs MR vs LR
Comparison 6.Day 0 F10104 vs Day 0 F8116
Comparison 7.Day 0 F10104 vs UR+MR+LR F10104 vs Day 0 F8116 vs UR+MR+LR F8116
 
 

XI. Analysis - Heatmap Profile

 

Species vs Sample Abundance Heatmap for All Samples

 
 
 

Heatmaps for Individual Comparisons

 
A) Two-way clustering - clustered on both columns (Samples) and rows (organism)
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Day 0 vs UR vs MR vs LRPDFSVGPDFSVGPDFSVG
Comparison 2Day 0 vs URPDFSVGPDFSVGPDFSVG
Comparison 3Day 0 vs MRPDFSVGPDFSVGPDFSVG
Comparison 4Day 0 vs LRPDFSVGPDFSVGPDFSVG
Comparison 5UR vs MR vs LRPDFSVGPDFSVGPDFSVG
Comparison 6Day 0 F10104 vs Day 0 F8116PDFSVGPDFSVGPDFSVG
Comparison 7Day 0 F10104 vs UR+MR+LR F10104 vs Day 0 F8116 vs UR+MR+LR F8116PDFSVGPDFSVGPDFSVG
 
 
B) One-way clustering - clustered on rows (organism) only
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Day 0 vs UR vs MR vs LRPDFSVGPDFSVGPDFSVG
Comparison 2Day 0 vs URPDFSVGPDFSVGPDFSVG
Comparison 3Day 0 vs MRPDFSVGPDFSVGPDFSVG
Comparison 4Day 0 vs LRPDFSVGPDFSVGPDFSVG
Comparison 5UR vs MR vs LRPDFSVGPDFSVGPDFSVG
Comparison 6Day 0 F10104 vs Day 0 F8116PDFSVGPDFSVGPDFSVG
Comparison 7Day 0 F10104 vs UR+MR+LR F10104 vs Day 0 F8116 vs UR+MR+LR F8116PDFSVGPDFSVGPDFSVG
 
 
C) No clustering
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Day 0 vs UR vs MR vs LRPDFSVGPDFSVGPDFSVG
Comparison 2Day 0 vs URPDFSVGPDFSVGPDFSVG
Comparison 3Day 0 vs MRPDFSVGPDFSVGPDFSVG
Comparison 4Day 0 vs LRPDFSVGPDFSVGPDFSVG
Comparison 5UR vs MR vs LRPDFSVGPDFSVGPDFSVG
Comparison 6Day 0 F10104 vs Day 0 F8116PDFSVGPDFSVGPDFSVG
Comparison 7Day 0 F10104 vs UR+MR+LR F10104 vs Day 0 F8116 vs UR+MR+LR F8116PDFSVGPDFSVGPDFSVG
 
 

XII. Analysis - Network Association

To analyze the co-occurrence or co-exclusion between microbial species among different samples, network correlation analysis tools are usually used for this purpose. However, microbiome count data are compositional. If count data are normalized to the total number of counts in the sample, the data become not independent and traditional statistical metrics (e.g., correlation) for the detection of specie-species relationships can lead to spurious results. In addition, sequencing-based studies typically measure hundreds of OTUs (species) on few samples; thus, inference of OTU-OTU association networks is severely under-powered. Here we use SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues (Kurtz et al., 2015). SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. SPIEC-EASI provides two algorithms for network inferencing – 1) Meinshausen-Bühlmann's neighborhood selection (MB method) and inverse covariance selection (GLASSO method, i.e., graphical least absolute shrinkage and selection operator). This is fundamentally distinct from SparCC, which essentially estimate pairwise correlations. In addition to these two methods, we provide the results of a third method - SparCC (Sparse Correlations for Compositional Data)(Friedman & Alm 2012), which is also a method for inferring correlations from compositional data. SparCC estimates the linear Pearson correlations between the log-transformed components.


References:

Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015 May 7;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226. PMID: 25950956; PMCID: PMC4423992.

Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20. PMID: 23028285; PMCID: PMC3447976.

 

SPIEC-EASI Network Inference by Neighborhood Selection (MB Method)

 

 

 

Association Network Inference by SparCC

 

 

 
 

XIII. Disclaimer

The results of this analysis are for research purpose only. They are not intended to diagnose, treat, cure, or prevent any disease. Forsyth and FOMC are not responsible for use of information provided in this report outside the research area.

 

Copyright FOMC 2023