FOMC Service Report

16S rRNA Gene V1V3 Amplicon Sequencing

Version V1.42

Version History

The Forsyth Institute, Cambridge, MA, USA
November 17, 2022

Project ID: FOMC8810


I. Project Summary

Project FOMC8810 services include NGS sequencing of the V1V3 region of the 16S rRNA gene amplicons from the samples. First and foremost, please download this report, as well as the sequence raw data from the download links provided below. These links will expire after 60 days. We cannot guarantee the availability of your data after 60 days.

Full Bioinformatics analysis service was requested. We provide many analyses, starting from the raw sequence quality and noise filtering, pair reads merging, as well as chimera filtering for the sequences, using the DADA2 denosing algorithm and pipeline.

We also provide many downstream analyses such as taxonomy assignment, alpha and beta diversity analyses, and differential abundance analysis.

For taxonomy assignment, most informative would be the taxonomy barplots. We provide an interactive barplots to show the relative abundance of microbes at different taxonomy levels (from Phylum to species) that you can choose.

If you specify which groups of samples you want to compare for differential abundance, we provide both ANCOM and LEfSe differential abundance analysis.

 

II. Workflow Checklist

1.Sample Received
2.Sample Quality Evaluated
3.Sample Prepared for Sequencing
4.Next-Gen Sequencing
5.Sequence Quality Check
6.Absolute Abundance
7.Report and Raw Sequence Data Available for Download
8.Bioinformatics Analysis - Reads Processing (DADA2 Quality Trimming, Denoising, Paired Reads Merging)
9.Bioinformatics Analysis - Reads Taxonomy Assignment
10.Bioinformatics Analysis - Alpha Diversity Analysis
11.Bioinformatics Analysis - Beta Diversity Analysis
12.Bioinformatics Analysis - Differential Abundance Analysis
13.Bioinformatics Analysis - Heatmap Profile
14.Bioinformatics Analysis - Network Association
 

III. NGS Sequencing

The samples were processed and analyzed with the ZymoBIOMICS® Service: Targeted Metagenomic Sequencing (Zymo Research, Irvine, CA).

DNA Extraction: If DNA extraction was performed, one of three different DNA extraction kits was used depending on the sample type and sample volume and were used according to the manufacturer’s instructions, unless otherwise stated. The kit used in this project is marked below:

ZymoBIOMICS® DNA Miniprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS® DNA Microprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS®-96 MagBead DNA Kit (Zymo Research, Irvine, CA)
N/A (DNA Extraction Not Performed)
Elution Volume: 50µL
Additional Notes: NA

Targeted Library Preparation: The DNA samples were prepared for targeted sequencing with the Quick-16S™ NGS Library Prep Kit (Zymo Research, Irvine, CA). These primers were custom designed by Zymo Research to provide the best coverage of the 16S gene while maintaining high sensitivity. The primer sets used in this project are marked below:

Quick-16S™ Primer Set V1-V2 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V1-V3 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V3-V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V6-V8 (Zymo Research, Irvine, CA)
Other: NA
Additional Notes: NA

The sequencing library was prepared using an innovative library preparation process in which PCR reactions were performed in real-time PCR machines to control cycles and therefore limit PCR chimera formation. The final PCR products were quantified with qPCR fluorescence readings and pooled together based on equal molarity. The final pooled library was cleaned up with the Select-a-Size DNA Clean & Concentrator™ (Zymo Research, Irvine, CA), then quantified with TapeStation® (Agilent Technologies, Santa Clara, CA) and Qubit® (Thermo Fisher Scientific, Waltham, WA).

Control Samples: The ZymoBIOMICS® Microbial Community Standard (Zymo Research, Irvine, CA) was used as a positive control for each DNA extraction, if performed. The ZymoBIOMICS® Microbial Community DNA Standard (Zymo Research, Irvine, CA) was used as a positive control for each targeted library preparation. Negative controls (i.e. blank extraction control, blank library preparation control) were included to assess the level of bioburden carried by the wet-lab process.

Sequencing: The final library was sequenced on Illumina® MiSeq™ with a V3 reagent kit (600 cycles). The sequencing was performed with 10% PhiX spike-in.

Absolute Abundance Quantification*: A quantitative real-time PCR was set up with a standard curve. The standard curve was made with plasmid DNA containing one copy of the 16S gene and one copy of the fungal ITS2 region prepared in 10-fold serial dilutions. The primers used were the same as those used in Targeted Library Preparation. The equation generated by the plasmid DNA standard curve was used to calculate the number of gene copies in the reaction for each sample. The PCR input volume (2 µl) was used to calculate the number of gene copies per microliter in each DNA sample.
The number of genome copies per microliter DNA sample was calculated by dividing the gene copy number by an assumed number of gene copies per genome. The value used for 16S copies per genome is 4. The value used for ITS copies per genome is 200. The amount of DNA per microliter DNA sample was calculated using an assumed genome size of 4.64 x 106 bp, the genome size of Escherichia coli, for 16S samples, or an assumed genome size of 1.20 x 107 bp, the genome size of Saccharomyces cerevisiae, for ITS samples. This calculation is shown below:

Calculated Total DNA = Calculated Total Genome Copies × Assumed Genome Size (4.64 × 106 bp) ×
Average Molecular Weight of a DNA bp (660 g/mole/bp) ÷ Avogadro’s Number (6.022 x 1023/mole)


* Absolute Abundance Quantification is only available for 16S and ITS analyses.

The absolute abundance standard curve data can be viewed in Excel here:

The absolute abundance standard curve is shown below:

Absolute Abundance Standard Curve

 

IV. Complete Report Download

The complete report of your project, including all links in this report, can be downloaded by clicking the link provided below. The downloaded file is a compressed ZIP file and once unzipped, open the file “REPORT.html” (may only shown as "REPORT" in your computer) by double clicking it. Your default web browser will open it and you will see the exact content of this report.

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Complete report download link:

To view the report, please follow the following steps:
1.Download the .zip file from the report link above.
2.Extract all the contents of the downloaded .zip file to your desktop.
3.Open the extracted folder and find the "REPORT.html" (may shown as only "REPORT").
4.Open (double-clicking) the REPORT.html file. Your default browser will open the top age of the complete report. Within the report, there are links to view all the analyses performed for the project.

 

V. Raw Sequence Data Download

The raw NGS sequence data is available for download with the link provided below. The data is a compressed ZIP file and can be unzipped to individual sequence files. Since this is a pair-end sequencing, each of your samples is represented by two sequence files, one for READ 1, with the file extension “*_R1.fastq.gz”, another READ 2, with the file extension “*_R1.fastq.gz”. The files are in FASTQ format and are compressed. FASTQ format is a text-based data format for storing both a biological sequence and its corresponding quality scores. Most sequence analysis software will be able to open them. The Sample IDs associated with the R1 and R2 fastq files are listed in the table below:

Sample IDOriginal Sample IDRead 1 File NameRead 2 File Name
F8810.S10original sample ID herezr8810_10V3V4_R1.fastq.gzzr8810_10V3V4_R2.fastq.gz
F8810.S11original sample ID herezr8810_11V3V4_R1.fastq.gzzr8810_11V3V4_R2.fastq.gz
F8810.S12original sample ID herezr8810_12V3V4_R1.fastq.gzzr8810_12V3V4_R2.fastq.gz
F8810.S13original sample ID herezr8810_13V3V4_R1.fastq.gzzr8810_13V3V4_R2.fastq.gz
F8810.S14original sample ID herezr8810_14V3V4_R1.fastq.gzzr8810_14V3V4_R2.fastq.gz
F8810.S15original sample ID herezr8810_15V3V4_R1.fastq.gzzr8810_15V3V4_R2.fastq.gz
F8810.S16original sample ID herezr8810_16V3V4_R1.fastq.gzzr8810_16V3V4_R2.fastq.gz
F8810.S17original sample ID herezr8810_17V3V4_R1.fastq.gzzr8810_17V3V4_R2.fastq.gz
F8810.S18original sample ID herezr8810_18V3V4_R1.fastq.gzzr8810_18V3V4_R2.fastq.gz
F8810.S19original sample ID herezr8810_19V3V4_R1.fastq.gzzr8810_19V3V4_R2.fastq.gz
F8810.S01original sample ID herezr8810_1V3V4_R1.fastq.gzzr8810_1V3V4_R2.fastq.gz
F8810.S20original sample ID herezr8810_20V3V4_R1.fastq.gzzr8810_20V3V4_R2.fastq.gz
F8810.S21original sample ID herezr8810_21V3V4_R1.fastq.gzzr8810_21V3V4_R2.fastq.gz
F8810.S22original sample ID herezr8810_22V3V4_R1.fastq.gzzr8810_22V3V4_R2.fastq.gz
F8810.S23original sample ID herezr8810_23V3V4_R1.fastq.gzzr8810_23V3V4_R2.fastq.gz
F8810.S24original sample ID herezr8810_24V3V4_R1.fastq.gzzr8810_24V3V4_R2.fastq.gz
F8810.S02original sample ID herezr8810_2V3V4_R1.fastq.gzzr8810_2V3V4_R2.fastq.gz
F8810.S03original sample ID herezr8810_3V3V4_R1.fastq.gzzr8810_3V3V4_R2.fastq.gz
F8810.S04original sample ID herezr8810_4V3V4_R1.fastq.gzzr8810_4V3V4_R2.fastq.gz
F8810.S05original sample ID herezr8810_5V3V4_R1.fastq.gzzr8810_5V3V4_R2.fastq.gz
F8810.S06original sample ID herezr8810_6V3V4_R1.fastq.gzzr8810_6V3V4_R2.fastq.gz
F8810.S07original sample ID herezr8810_7V3V4_R1.fastq.gzzr8810_7V3V4_R2.fastq.gz
F8810.S08original sample ID herezr8810_8V3V4_R1.fastq.gzzr8810_8V3V4_R2.fastq.gz
F8810.S09original sample ID herezr8810_9V3V4_R1.fastq.gzzr8810_9V3V4_R2.fastq.gz

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Raw sequence data download link:

 

VI. Analysis - DADA2 Read Processing

What is DADA2?

DADA2 is a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. DADA2 identified more real variants and output fewer spurious sequences than other methods.

DADA2’s advantage is that it uses more of the data. The DADA2 error model incorporates quality information, which is ignored by all other methods after filtering. The DADA2 error model incorporates quantitative abundances, whereas most other methods use abundance ranks if they use abundance at all. The DADA2 error model identifies the differences between sequences, eg. A->C, whereas other methods merely count the mismatches. DADA2 can parameterize its error model from the data itself, rather than relying on previous datasets that may or may not reflect the PCR and sequencing protocols used in your study.

DADA2 Publication: Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016 Jul;13(7):581-3. doi: 10.1038/nmeth.3869. Epub 2016 May 23. PMID: 27214047; PMCID: PMC4927377.

DADA2 Software Package is available as an R package at : https://benjjneb.github.io/dada2/index.html

Analysis Procedures:

DADA2 pipeline includes several tools for read quality control, including quality filtering, trimming, denoising, pair merging and chimera filtering. Below are the major processing steps of DADA2:

Step 1. Read trimming based on sequence quality The quality of NGS Illumina sequences often decreases toward the end of the reads. DADA2 allows to trim off the poor quality read ends in order to improve the error model building and pair mergicing performance.

Step 2. Learn the Error Rates The DADA2 algorithm makes use of a parametric error model (err) and every amplicon dataset has a different set of error rates. The learnErrors method learns this error model from the data, by alternating estimation of the error rates and inference of sample composition until they converge on a jointly consistent solution. As in many machine-learning problems, the algorithm must begin with an initial guess, for which the maximum possible error rates in this data are used (the error rates if only the most abundant sequence is correct and all the rest are errors).

Step 3. Infer amplicon sequence variants (ASVs) based on the error model built in previous step. This step is also called sequence "denoising". The outcome of this step is a list of ASVs that are the equivalent of oligonucleotides.

Step 4. Merge paired reads. If the sequencing products are read pairs, DADA2 will merge the R1 and R2 ASVs into single sequences. Merging is performed by aligning the denoised forward reads with the reverse-complement of the corresponding denoised reverse reads, and then constructing the merged “contig” sequences. By default, merged sequences are only output if the forward and reverse reads overlap by at least 12 bases, and are identical to each other in the overlap region (but these conditions can be changed via function arguments).

Step 5. Remove chimera. The core dada method corrects substitution and indel errors, but chimeras remain. Fortunately, the accuracy of sequence variants after denoising makes identifying chimeric ASVs simpler than when dealing with fuzzy OTUs. Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a right-segment from two more abundant “parent” sequences. The frequency of chimeric sequences varies substantially from dataset to dataset, and depends on on factors including experimental procedures and sample complexity.

Results

1. Read Quality Plots NGS sequence analaysis starts with visualizing the quality of the sequencing. Below are the quality plots of the first sample for the R1 and R2 reads separately. In gray-scale is a heat map of the frequency of each quality score at each base position. The mean quality score at each position is shown by the green line, and the quartiles of the quality score distribution by the orange lines. The forward reads are usually of better quality. It is a common practice to trim the last few nucleotides to avoid less well-controlled errors that can arise there. The trimming affects the downstream steps including error model building, merging and chimera calling. FOMC uses an empirical approach to test many combinations of different trim length in order to achieve best final amplicon sequence variants (ASVs), see the next section “Optimal trim length for ASVs”.

Quality plots for all samples:

2. Optimal trim length for ASVs The final number of merged and chimera-filtered ASVs depends on the quality filtering (hence trimming) in the very beginning of the DADA2 pipeline. In order to achieve highest number of ASVs, an empirical approach was used -

  1. Create a random subset of each sample consisting of 5,000 R1 and 5,000 R2 (to reduce computation time)
  2. Trim 10 bases at a time from the ends of both R1 and R2 up to 50 bases
  3. For each combination of trimmed length (e.g., 300x300, 300x290, 290x290 etc), the trimmed reads are subject to the entire DADA2 pipeline for chimera-filtered merged ASVs
  4. The combination with highest percentage of the input reads becoming final ASVs is selected for the complete set of data

Below is the result of such operation, showing ASV percentages of total reads for all trimming combinations (1st Column = R1 lengths in bases; 1st Row = R2 lengths in bases):

R1/R2271261251241231
32112.37%14.92%20.92%22.28%26.48%
31114.49%19.32%27.69%30.62%33.78%
30113.61%19.05%27.86%31.29%34.92%
29113.56%18.59%26.64%31.25%34.23%
28113.52%17.79%26.49%30.93%33.70%
27113.56%17.88%26.08%30.55%33.14%

Based on the above result, the trim length combination of R1 = 301 bases and R2 = 231 bases (highlighted red above), was chosen for generating final ASVs for all sequences. This combination generated highest number of merged non-chimeric ASVs and was used for downstream analyses, if requested.

3. Error plots from learning the error rates After DADA2 building the error model for the set of data, it is always worthwhile, as a sanity check if nothing else, to visualize the estimated error rates. The error rates for each possible transition (A→C, A→G, …) are shown below. Points are the observed error rates for each consensus quality score. The black line shows the estimated error rates after convergence of the machine-learning algorithm. The red line shows the error rates expected under the nominal definition of the Q-score. The ideal result would be the estimated error rates (black line) are a good fit to the observed rates (points), and the error rates drop with increased quality as expected.

Forward Read R1 Error Plot


Reverse Read R2 Error Plot

The PDF version of these plots are available here:

 

4. DADA2 Result Summary The table below shows the summary of the DADA2 analysis, tracking paired read counts of each samples for all the steps during DADA2 denoising process - including end-trimming (filtered), denoising (denoisedF, denoisedF), pair merging (merged) and chimera removal (nonchim).

Sample IDF8810.S01F8810.S02F8810.S03F8810.S04F8810.S05F8810.S06F8810.S07F8810.S08F8810.S09F8810.S10F8810.S11F8810.S12F8810.S13F8810.S14F8810.S15F8810.S16F8810.S17F8810.S18F8810.S19F8810.S20F8810.S21F8810.S22F8810.S23F8810.S24Row SumPercentage
input70,59063,44668,81963,67059,32673,51068,39578,72871,13440,07270,97070,70674,17065,19854,68867,93176,49169,08569,30249,68056,82164,34175,30571,2961,593,674100.00%
filtered70,58863,44668,81863,67059,32573,51068,39478,72771,13340,07170,97070,70674,17065,19754,68767,93176,49169,08469,30249,68056,81964,34175,30471,2941,593,658100.00%
denoisedF64,78657,83564,91758,74253,26167,20962,75276,98864,93737,31865,03065,45166,84659,05749,38063,52871,22662,01166,33948,26252,38058,03569,58664,4251,470,30192.26%
denoisedR67,11359,51065,61659,32555,81569,29162,28576,69867,99037,99761,55367,78268,20758,11950,09162,36172,40264,88166,62447,29754,30156,77171,30767,7541,491,09093.56%
merged48,26843,67551,40241,97837,42549,99348,20262,01051,45531,79141,68554,86346,83138,90232,68049,43956,20646,86038,80539,93541,04638,35654,12942,8571,088,79368.32%
nonchim25,43126,09413,94319,27623,40630,15923,4916,83623,49010,26024,77826,15425,43024,40721,19415,50519,50330,19013,8165,94617,57923,44723,39625,301499,03231.31%

This table can be downloaded as an Excel table below:

 

5. DADA2 Amplicon Sequence Variants (ASVs). A total of 2998 unique merged and chimera-free ASV sequences were identified, and their corresponding read counts for each sample are available in the "ASV Read Count Table" with rows for the ASV sequences and columns for sample. This read count table can be used for microbial profile comparison among different samples and the sequences provided in the table can be used to taxonomy assignment.

 

The table can be downloaded from this link:

 
 

Sample Meta Information

#SampleIDSample NameGroup
F8810.S01C1.1Group C1
F8810.S02C2.1Group C1
F8810.S03C3.1Group C1
F8810.S04H1.1Group H1
F8810.S05H2.1Group H1
F8810.S06H3.1Group H1
F8810.S07HA1.1Group HA1
F8810.S08HA2.1Group HA1
F8810.S09HA3.1Group HA1
F8810.S10A1.1Group A1
F8810.S11A2.1Group A1
F8810.S12A3.1Group A1
F8810.S13C1.2Group C2
F8810.S14C2.2Group C2
F8810.S15C3.2Group C2
F8810.S16H1.2Group H2
F8810.S17H2.2Group H2
F8810.S18H3.2Group H2
F8810.S19HA1.2Group HA2
F8810.S20HA2.2Group HA2
F8810.S21HA3.2Group HA2
F8810.S22A1.2Group A2
F8810.S23A2.2Group A2
F8810.S24A3.2Group A2
 
 

ASV Read Counts by Samples

#Sample IDRead Count
F8810.S205,946
F8810.S086,836
F8810.S1010,260
F8810.S1913,816
F8810.S0313,943
F8810.S1615,505
F8810.S2117,579
F8810.S0419,276
F8810.S1719,503
F8810.S1521,194
F8810.S2323,396
F8810.S0523,406
F8810.S2223,447
F8810.S0923,490
F8810.S0723,491
F8810.S1424,407
F8810.S1124,778
F8810.S2425,301
F8810.S1325,430
F8810.S0125,431
F8810.S0226,094
F8810.S1226,154
F8810.S0630,159
F8810.S1830,190
 
 
 

VII. Analysis - Read Taxonomy Assignment

Read Taxonomy Assignment - Methods

 

The species-level, open-reference 16S rRNA NGS reads taxonomy assignment pipeline

Version 20210310
 

1. Raw sequences reads in FASTA format were BLASTN-searched against a combined set of 16S rRNA reference sequences. It consists of MOMD (version 0.1), the HOMD (version 15.2 http://www.homd.org/index.php?name=seqDownload&file&type=R ), HOMD 16S rRNA RefSeq Extended Version 1.1 (EXT), GreenGene Gold (GG) (http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/gold_strains_gg16S_aligned.fasta.gz) , and the NCBI 16S rRNA reference sequence set (https://ftp.ncbi.nlm.nih.gov/blast/db/16S_ribosomal_RNA.tar.gz). These sequences were screened and combined to remove short sequences (<1000nt), chimera, duplicated and sub-sequences, as well as sequences with poor taxonomy annotation (e.g., without species information). This process resulted in 1,015 from HOMD V15.22, 495 from EXT, 3,940 from GG and 18,044 from NCBI, a total of 25,120 sequences. Altogether these sequence represent a total of 15,601 oral and non-oral microbial species.

The NCBI BLASTN version 2.7.1+ (Zhang et al, 2000) was used with the default parameters. Reads with ≥ 98% sequence identity to the matched reference and ≥ 90% alignment length (i.e., ≥ 90% of the read length that was aligned to the reference and was used to calculate the sequence percent identity) were classified based on the taxonomy of the reference sequence with highest sequence identity. If a read matched with reference sequences representing more than one species with equal percent identity and alignment length, it was subject to chimera checking with USEARCH program version v8.1.1861 (Edgar 2010). Non-chimeric reads with multi-species best hits were considered valid and were assigned with a unique species notation (e.g., spp) denoting unresolvable multiple species.

2. Unassigned reads (i.e., reads with < 98% identity or < 90% alignment length) were pooled together and reads < 200 bases were removed. The remaining reads were subject to the de novo operational taxonomy unit (OTU) calling and chimera checking using the USEARCH program version v8.1.1861 (Edgar 2010). The de novo OTU calling and chimera checking was done using 98% as the sequence identity cutoff, i.e., the species-level OTU. The output of this step produced species-level de novo clustered OTUs with 98% identity. Representative reads from each of the OTUs/species were then BLASTN-searched against the same reference sequence set again to determine the closest species for these potential novel species. These potential novel species were pooled together with the reads that were signed to specie-level in the previous step, for down-stream analyses.

Reference:
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12. PubMed PMID: 20709691.

3. Designations used in the taxonomy:

	1) Taxonomy levels are indicated by these prefixes:
	
	   k__: domain/kingdom
	   p__: phylum
	   c__: class
	   o__: order
	   f__: family
	   g__: genus  
	   s__: species
	
	   Example: 
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__faecis
		
	2) Unique level identified – known species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__hominis
	
	   The above example shows some reads match to a single species (all levels are unique)
	
	3) Non-unique level identified – known species:

	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__multispecies_spp123_3
	   
	   The above example “s__multispecies_spp123_3” indicates certain reads equally match to 3 species of the 
	   genus Roseburia; the “spp123” is a temporally assigned species ID.
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__multigenus;s__multispecies_spp234_5
	   
	   The above example indicates certain reads match equally to 5 different species, which belong to multiple genera.; 
	   the “spp234” is a temporally assigned species ID.
	
	4) Unique level identified – unknown species, potential novel species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ hominis_nov_97%
	   
	   The above example indicates that some reads have no match to any of the reference sequences with 
	   sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. However this groups 
	   of reads (actually the representative read from a de novo  OTU) has 96% percent identity to 
	   Roseburia hominis, thus this is a potential novel species, closest to Roseburia hominis. 
	   (But they are not the same species).
	
	5) Multiple level identified – unknown species, potential novel species:
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ multispecies_sppn123_3_nov_96%
	
	   The above example indicates that some reads have no match to any of the reference sequences 
	   with sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. 
	   However this groups of reads (actually the representative read from a de novo  OTU) 
	   has 96% percent identity equally to 3 species in Roseburia. Thus this is no single 
	   closest species, instead this group of reads match equally to multiple species at 96%. 
	   Since they have passed chimera check so they represent a novel species. “sppn123” is a 
	   temporary ID for this potential novel species. 

 
4. The taxonomy assignment algorithm is illustrated in this flow char below:
 
 
 
 

Read Taxonomy Assignment - Result Summary *

CodeCategoryMPC=0% (>=1 read)MPC=0.01%(>=47 reads)
ATotal reads499,032499,032
BTotal assigned reads473,394473,394
CAssigned reads in species with read count < MPC0585
DAssigned reads in samples with read count < 50000
ETotal samples2424
FSamples with reads >= 5002424
GSamples with reads < 50000
HTotal assigned reads used for analysis (B-C-D)473,394472,809
IReads assigned to single species82,34082,329
JReads assigned to multiple species6,9576,957
KReads assigned to novel species384,097383,523
LTotal number of species293249
MNumber of single species3534
NNumber of multi-species55
ONumber of novel species253210
PTotal unassigned reads25,63825,638
QChimeric reads1,1351,135
RReads without BLASTN hits00
SOthers: short, low quality, singletons, etc.24,50324,503
A=B+P=C+D+H+Q+R+S
E=F+G
B=C+D+H
H=I+J+K
L=M+N+O
P=Q+R+S
* MPC = Minimal percent (of all assigned reads) read count per species, species with read count < MPC were removed.
* Samples with reads < 500 were removed from downstream analyses.
* The assignment result from MPC=0.1% was used in the downstream analyses.
 
 
 

Read Taxonomy Assignment - ASV Species-Level Read Counts Table

This table shows the read counts for each sample (columns) and each species identified based on the ASV sequences. The downstream analyses were based on this table.
SPIDTaxonomyF8810.S01F8810.S02F8810.S03F8810.S04F8810.S05F8810.S06F8810.S07F8810.S08F8810.S09F8810.S10F8810.S11F8810.S12F8810.S13F8810.S14F8810.S15F8810.S16F8810.S17F8810.S18F8810.S19F8810.S20F8810.S21F8810.S22F8810.S23F8810.S24
SP1Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-17877014210000007642010602556031606180000000
SP10Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Rikenellaceae;Alistipes;sp._MOT-1272802050167124213304313317255420315145003072732042673692113620244
SP11Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Sutterellaceae;Turicimonas;muris0000046666880075370450000110872918010111264
SP19Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;acidofaciens000000761295664064300000000001360
SP2Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;caecimuris116183211218229279404179229241036238522627324229929825826317125760213262
SP20Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Blautia;caecimuris00000006300596000000000233121000
SP21Bacteria;Firmicutes;Clostridia;Eubacteriales;Peptococcaceae;Peptococcaceae_[G-1];bacterium_MOT-1461031090850940040000125055111118169000000
SP22Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;sp._MOT-128024814072000022700514820634250017944500882858174347
SP23Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus;taiwanensis732634698421356600000044830046797121167000000
SP24Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Acutalibacter;muris00000190000027000003570176000000
SP27Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Roseburia;faecis0000002650000000001124200000316
SP28Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Flavonifractor;plautii0000000114000000000018901350620
SP29Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-1490337253184642723596000468029436141101515870002540173
SP3Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-1835893090000266000012540000375000034300
SP30Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Robinsoniella;peoriensis0000000608000000000048500000
SP31Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-9];bacterium_MOT-1740003637274510000980096736800111772000000
SP32Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-4];bacterium_MOT-1640000011700000000000117000000
SP33Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Erysipelatoclostridium;[Clostridium] cocleatum00000000216000000000000000
SP34Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Rikenellaceae;Alistipes;timonensis0018400317000000000000000000
SP35Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-2];bacterium_MOT-16200011319821900000014200000000000
SP36Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Lawsonibacter;asaccharolyticus022100000000000199000344000000
SP37Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-1];bacterium_MOT-1590193000014100000000000000000
SP38Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-1];bacterium_MOT-1580000000000000000000003180402
SP39Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Neglectibacter;timonensis00000310000000000000000000
SP4Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;stercorirosoris148015702312121780182015702385790020737119600698119364
SP40Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-3];bacterium_MOT-1630000000000540000000000000
SP42Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-2];bacterium_MOT-16700000015300000000000000000
SP43Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-7];bacterium_MOT-15400000680000000170000000000
SP44Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;tertium00000000000000000002730000
SP5Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculum;intestinale00000034402180616265000000108619748002590
SP6Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-1847638125334144494536290003081042529494928006200003110265
SP7Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-6];bacterium_MOT-1535900000000000000000000000
SP8Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Parabacteroides;goldsteinii00230001372892232811810170000016217229333233146
SP9Bacteria;Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Akkermansiaceae;Akkermansia;muciniphila0294000022100102501271000000248010699871053866
SPN1Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotellamassilia;timonensis_nov_92.641%00000000000000000000117000
SPN10Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Parabacteroides;goldsteinii_nov_97.614%0000000800000000000000000
SPN100Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Anaerotaenia;torta_nov_97.273%0099753279721000000003055323020000000
SPN101Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-3];bacterium_MOT-150_nov_90.745%00011001690000000067870000000171
SPN102Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Kineothrix;alysoides_nov_95.227%9538130314018591015000000041010712316890874000000
SPN103Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Anaerotruncus;rubiinfantis_nov_92.760%223000026266101970229015402550044900004540
SPN104Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_91.991%0000120295000116276004520202166200000394323215
SPN105Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Mediterraneibacter;[Ruminococcus] gnavus_nov_93.424%3475870000695000612000000480000000
SPN106Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Rikenellaceae;Alistipes;putredinis_nov_95.887%354223104010112300001440003410821650002690762
SPN107Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillibacter;valericigenes_nov_95.260%17716933000035500094904400000000000151
SPN108Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Kineothrix;alysoides_nov_97.279%379629000000000023502130615383000000
SPN109Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Pseudobutyrivibrio;ruminis_nov_91.176%4305233650015600002640000111252331000000
SPN11Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-9];bacterium_MOT-174_nov_96.364%0000000000000026047500000000
SPN110Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-1];bacterium_MOT-129_nov_91.522%00000000860000000002113010700116
SPN111Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Saccharofermentans;acetigenes_nov_88.764%0128005110226000345302168262000000004690
SPN112Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lacrimispora;indolis_nov_90.724%0037077389386802530130794489001630109300112515720981
SPN113Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Kineothrix;alysoides_nov_93.651%00000000000597000001688000000
SPN114Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Lawsonibacter;asaccharolyticus_nov_97.973%33100000000000299305491018523000000294
SPN115Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-185_nov_92.358%11950008870000000000000000000
SPN116Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_90.870%00002420243000034006880152019600000217
SPN117Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_93.043%00000000002380000000840038646600
SPN118Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_91.106%0003403450000068203040000233000000
SPN119Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Rikenellaceae;Alistipes;putredinis_nov_95.879%000024623700490002710851511221660002190212
SPN12Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-4];bacterium_MOT-151_nov_93.708%0000000000000000073000000
SPN120Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Odoribacteraceae;Odoribacter;splanchnicus_nov_93.939%25715600212202000000606027002740002100
SPN121Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_95.506%488573394433465564420026186593279480651368348350551000458367548
SPN122Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Ruthenibacterium;lactatiformans_nov_97.045%0000000045601521982611431181589898000000
SPN123Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-10];bacterium_MOT-175_nov_95.475%0000571200000000024701734150000000
SPN124Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-178_nov_97.978%2973870000001130016347300000000000
SPN125Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-9];bacterium_MOT-174_nov_96.388%0000000098000000377000000000
SPN126Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-185_nov_96.599%755000000000259310000000000000
SPN127Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_90.022%00000000000000000809130032300
SPN128Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Faecalicatena;orotica_nov_95.238%0001540000000000000680005490423
SPN129Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Enterocloster;asparagiformis_nov_94.344%00000033300088014100000000000
SPN13Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotellamassilia;timonensis_nov_94.168%129410000040134244399715595170519062062248242578605341639621
SPN130Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Eisenbergiella;massiliensis_nov_96.599%2170000000274000000000000370155160
SPN131Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Neglectibacter;timonensis_nov_97.500%9864103078124000015000000000004120145
SPN132Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfovibrionaceae;Mailhella;massiliensis_nov_92.094%34340012532760729853503540269411567374364317435311520348415363383
SPN133Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Anaerotruncus;rubiinfantis_nov_92.517%000041018902500137115110000000015413700
SPN134Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Neglectibacter;timonensis_nov_97.727%128012300000130000231163315000000000
SPN135Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Butyricicoccus;pullicaecorum_nov_94.820%117013313603470000001520000194000000
SPN136Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-176_nov_95.946%049500000000000230000000335000
SPN137Bacteria;Firmicutes;Clostridia;Clostridiales;Eubacteriaceae_[XV];Eubacterium;coprostanoligenes_nov_95.701%000208024632000000009400000013500
SPN138Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-184_nov_95.405%3302070000000003750089000000000
SPN139Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Acetatifactor;muris_nov_96.145%501010000000000036700000000000
SPN14Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_95.056%252290012840825337200033706326621332121174570007780317
SPN140Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-183_nov_95.425%210450000870000193000000000000
SPN141Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_95.281%02640000138000453000000000010200
SPN142Bacteria;Firmicutes;Clostridia;Eubacteriales;Vallitaleaceae;Petrocella;atlantisensis_nov_87.810%205000126000870202125568000490000000
SPN143Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-3];bacterium_MOT-150_nov_96.396%10708701021750014101090000009600010700
SPN144Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-6];bacterium_MOT-171_nov_95.238%409671000037502360004450000309000106201068238
SPN145Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Falcatimonas;natans_nov_93.651%0000020000000000000724000000
SPN146Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_92.208%000000000000002350003730000311
SPN147Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-2];bacterium_MOT-162_nov_95.260%25212100015400009001090000000017400
SPN148Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Anaerosporobacter;mobilis_nov_95.000%0000000000525000358000000000
SPN149Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Ruminococcus;albus_nov_92.500%00052401270000010600000000012500
SPN15Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-4];bacterium_MOT-151_nov_92.568%0000000000006900000000000
SPN150Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Rikenellaceae;Alistipes;putredinis_nov_96.529%12602454534453352980260431341319252226369182184302275296225455411423
SPN151Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Lawsonibacter;asaccharolyticus_nov_97.297%0000043143900000000000000000
SPN152Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;oryzae_nov_88.889%61870014421600000001649028073000000
SPN153Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Eisenbergiella;massiliensis_nov_95.260%1380000717000000000000000000
SPN154Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;Rhodospirillum;rubrum_nov_88.036%00000900000906500250000018727119
SPN155Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Lawsonibacter;asaccharolyticus_nov_95.730%00000000495000000000000000
SPN156Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-3];bacterium_MOT-163_nov_95.023%139000001590000000000190000000
SPN157Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Anaerotignum;lactatifermentans_nov_97.523%000000009188094000008100007342
SPN158Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Phocea;massiliensis_nov_95.682%480042725434022138402262050328640616523052652900131501420161
SPN159Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_96.171%0000000018400000000000280000
SPN16Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Harryflintia;acetispora_nov_96.388%0000000000000000000000660
SPN160Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-6];bacterium_MOT-171_nov_95.485%0000000000000022400234000000
SPN161Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-6];bacterium_MOT-171_nov_96.606%000000110000101000000000002340
SPN162Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculum;intestinale_nov_93.737%1020012902786970237021099426832929300016803945681466377
SPN163Bacteria;Firmicutes;Clostridia;Clostridiales;Clostridiales_[F-1];Clostridiales_[F-1][G-1];bacterium HMT093 nov_90.337%00055000000244130000000000000
SPN164Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Falcatimonas;natans_nov_92.955%05900000024200000000000116000
SPN165Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-184_nov_95.692%40900000000000000000000000
SPN166Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Butyricicoccus;pullicaecorum_nov_94.382%0000003090536000000000000000
SPN167Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Kineothrix;alysoides_nov_95.465%0000017400000002110000000000
SPN168Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_96.396%0000000019200179000000000000
SPN169Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-3];bacterium_MOT-163_nov_93.679%030337000000000000000000000
SPN17Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Marvinbryantia;formatexigens_nov_91.403%6500000000000000000000000
SPN170Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-12];bacterium_MOT-180_nov_93.665%00003530000000000000000000
SPN171Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_88.462%000000000000032200000000025
SPN172Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] populeti_nov_94.331%92600006357640000054500004980008481065950
SPN173Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-184_nov_95.227%00000000000000000000322000
SPN174Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] populeti_nov_96.145%00000000000000000308000000
SPN175Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Anaerotruncus;rubiinfantis_nov_93.182%00000000000000000000029300
SPN176Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-3];bacterium HMT351 nov_97.065%65014008700000000000125000000
SPN177Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-4];bacterium_MOT-164_nov_96.606%0000016300000000122000000000
SPN178Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_95.270%00000000002840000000000000
SPN179Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-4];bacterium_MOT-165_nov_97.059%000000000018600000970000000
SPN18Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-10];bacterium_MOT-175_nov_90.693%0000000000610000000000000
SPN180Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Anaerotruncus;colihominis_nov_94.091%00000000000002790000000000
SPN181Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Mageeibacillus;indolicus_nov_87.668%00000000000000277000000000
SPN182Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-12];bacterium_MOT-179_nov_94.796%0000000000004443035201800000000221
SPN183Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_92.873%00000000000000000000027300
SPN184Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-184_nov_95.238%00000000785000000000000000
SPN185Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] populeti_nov_92.955%00000000000025200000000000
SPN186Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Roseburia;faecis_nov_95.475%00000000000024600000000000
SPN187Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Muricomes;intestini_nov_94.331%1410000000000010500000000000
SPN188Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Neglectibacter;timonensis_nov_97.959%00000024600000000000000000
SPN189Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-2];bacterium_MOT-162_nov_95.692%000148000000000970000000000
SPN19Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-7];bacterium_MOT-172_nov_94.344%0057000000000000000000000
SPN190Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Harryflintia;acetispora_nov_93.468%650000000001770000000000000
SPN191Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Kineothrix;alysoides_nov_96.372%1160000124000000000000000000
SPN192Bacteria;Firmicutes;Clostridia;Eubacteriales;Gracilibacteraceae;Gracilibacter;thermotolerans_nov_88.315%0000038450000000000000965300
SPN193Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-176_nov_97.297%06230063200088200183300445000000011680
SPN194Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-178_nov_96.629%00000000000000000222000000
SPN195Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_93.919%0000057000000010947300670000073
SPN196Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Paludicola;psychrotolerans_nov_94.533%000000960000000000124000000
SPN197Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_95.291%940000000000007100000005200
SPN198Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillibacter;ruminantium_nov_93.919%000000000000148059000000000
SPN199Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Anaerostipes;butyraticus_nov_97.285%00000000000205000000000000
SPN2Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Acetatifactor;muris_nov_92.551%003620000000013880000000097445422640
SPN20Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Roseburia;intestinalis_nov_95.475%0570000000000000000000000
SPN200Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Rikenellaceae;Alistipes;sp._MOT-127_nov_91.775%000000015200000000000047000
SPN201Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Murimonas;intestini_nov_96.591%00000000000000000193000000
SPN202Bacteria;Firmicutes;Clostridia;Clostridiales;Clostridiales_[F-1];Clostridiales_[F-1][G-1];bacterium HMT093 nov_86.323%000000000000000000000112740
SPN203Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-4];bacterium_MOT-165_nov_97.065%000128000000000005600000000
SPN204Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Kineothrix;alysoides_nov_97.059%000636033500000010671557105900882000000
SPN205Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;[Clostridium] populeti_nov_92.986%07640000000000000000000000
SPN206Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Kineothrix;alysoides_nov_96.136%00000000000000000175000000
SPN207Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Anaerocolumna;jejuensis_nov_92.358%00000000000000000172000000
SPN208Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-3];bacterium HMT351 nov_96.847%00000000000017100000000000
SPN209Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-1];bacterium_MOT-160_nov_95.270%00000016500000000000000000
SPN21Bacteria;Firmicutes;Clostridia;Eubacteriales;Christensenellaceae;Christensenella;hongkongensis_nov_86.353%0670320811600000015181000100000000
SPN210Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Mediterraneibacter;[Ruminococcus] gnavus_nov_97.045%00000000000001640000000000
SPN211Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Blautia;caecimuris_nov_96.825%00000000016400000000000000
SPN212Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculum;intestinale_nov_92.688%00000000080000000001410000
SPN213Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Faecalicatena;orotica_nov_97.959%00000000000149000000000000
SPN214Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-1];bacterium_MOT-158_nov_95.034%00000000000000000146000000
SPN215Bacteria;Proteobacteria;Alphaproteobacteria;Maricaulales;Robiginitomaculaceae;Algimonas;porphyrae_nov_83.596%320000019800000120096008200000232
SPN216Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_90.456%3982600003230035702030133028334330151671803595920665
SPN217Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-4];bacterium_MOT-164_nov_95.701%00000000000000000000000146
SPN218Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-9];bacterium_MOT-174_nov_94.344%00000000000000001450000000
SPN219Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Saccharofermentans;acetigenes_nov_88.063%74068000000000000000000000
SPN22Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Pseudoflavonifractor;capillosus_nov_90.112%0000000000000570000000000
SPN220Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Frisingicoccus;caecimuris_nov_96.154%00000000141000000000000000
SPN221Bacteria;Firmicutes;Clostridia;Eubacteriales;Christensenellaceae;Christensenella;massiliensis_nov_87.416%70000000000006800000000000
SPN222Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_93.261%00000000000000000000000129
SPN223Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Eisenbergiella;massiliensis_nov_94.382%00000000000000000122000000
SPN224Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Mediterraneibacter;[Ruminococcus] gnavus_nov_97.285%01200000000000000000000000
SPN225Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-4];bacterium_MOT-165_nov_95.918%00000000000000000000000119
SPN226Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-9];bacterium_MOT-174_nov_96.136%9900810000000013200017700001510114
SPN23Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-2];bacterium HMT091 nov_93.002%00000000001803700000000000
SPN24Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Harryflintia;acetispora_nov_92.517%0000005400000000000000000
SPN25Bacteria;Firmicutes;Clostridia;Clostridiales;Peptococcaceae;Peptococcus;sp. HMT168 nov_89.979%00000034000000016000000000
SPN26Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Kineothrix;alysoides_nov_93.682%06877589187753000000000008899660000000
SPN27Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Parabacteroides;goldsteinii_nov_93.074%00000000001200000003500000
SPN3Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Saccharofermentans;acetigenes_nov_88.739%00000000000000000001120000
SPN32Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Coprococcus;catus_nov_94.570%3800000000002820000000000000
SPN38Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Roseburia;faecis_nov_97.964%357166512000000000072621401516137800020700
SPN4Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfovibrionaceae;Bilophila;wadsworthia_nov_91.684%000220330005300000000000000
SPN49Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Muribaculaceae;Duncaniella;freteri_nov_93.103%00580000018311440000000013030181500248
SPN5Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillibacter;valericigenes_nov_95.475%0000009300000000000000000
SPN53Bacteria;Firmicutes;Clostridia;Clostridiales;Eubacteriaceae_[XV];Eubacterium;ventriosum_nov_96.825%16600046145950000000000196000000
SPN6Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-1];bacterium_MOT-147_nov_95.937%00000060000280000000000000
SPN60Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_93.074%15636628002160307473134003394840028118812217602023600661
SPN63Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_92.441%0000000000000000004551740000
SPN7Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-2];bacterium_MOT-167_nov_97.968%0000000000000000000000085
SPN72Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lacrimispora;xylanolytica_nov_97.285%385350002420294044759540133900000000374336606351
SPN74Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Hydrogenoanaerobacterium;saccharovorans_nov_93.636%0000000000022400000000402000
SPN78Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Odoribacteraceae;Culturomica;massiliensis_nov_93.709%24644022975350072844400020002491419000401000201048
SPN79Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Kineothrix;alysoides_nov_95.928%0019500746001101156808340000084400146982210582043
SPN8Bacteria;Firmicutes;Clostridia;Eubacteriales;Gracilibacteraceae;Gracilibacter;thermotolerans_nov_87.668%000001900001600000000047000
SPN80Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-10];bacterium_MOT-175_nov_96.372%000000155053754218863800000000302220947732
SPN81Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-4];bacterium_MOT-151_nov_96.847%000921160000000163140011100000000
SPN82Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_92.191%067000484296000023355159626301992820006610577
SPN83Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-10];bacterium_MOT-175_nov_92.174%9613640072101970594000000000000001321
SPN84Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnoclostridium;pacaense_nov_96.825%7354044430005300000000053500000015060
SPN85Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_89.462%021700060200016513150000064977200043200
SPN86Bacteria;Firmicutes;Clostridia;Clostridiales;Eubacteriaceae_[XV];Eubacterium;coprostanoligenes_nov_95.485%2514941880000003195230605153056135426700000423
SPN87Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Muribaculaceae;Muribaculaceae_[G-2];bacterium_MOT-104_nov_91.974%6300351004100000387206000551610000734335770
SPN88Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-12];bacterium_MOT-179_nov_92.534%000000004470052703914356493581200020408080
SPN89Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-14];bacterium_MOT-184_nov_94.989%15301043772506746900027004013842590045500000363
SPN9Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Eisenbergiella;tayi_nov_94.318%0000000000000000000000080
SPN90Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Pseudoflavonifractor;capillosus_nov_95.721%313973425752945637888036609122475937504500418364005820167601
SPN91Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Anaerotignum;lactatifermentans_nov_95.270%2810065018741102991195200217064850543000053200
SPN92Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-9];bacterium_MOT-174_nov_95.238%022400000000000000160000002330
SPN93Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Caecibacterium;sporoformans_nov_95.045%0113500597125000000000000699000000
SPN94Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Rikenellaceae;Alistipes;timonensis_nov_97.831%0126039133602460000035551743702932120002780287
SPN95Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_95.946%9120133402842140008637229722200007000221387261143
SPN96Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-2];bacterium_MOT-149_nov_94.157%2220148234263654000000494532860122678000000
SPN97Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Rikenellaceae;Alistipes;senegalensis_nov_95.228%73234734345847640100005701660001340000000
SPN98Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Oscillospiraceae_[G-4];bacterium_MOT-151_nov_91.723%287431002472393270005460451000313000027000
SPN99Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];bacterium_MOT-177_nov_97.523%033940368173653700000000000000000385
SPP1Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;multispecies_spp1_20000000000002622090000000000
SPP2Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Enterobacter;multispecies_spp2_400000007530000000000000000
SPP3Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;multispecies_spp3_23640003299802704601570003409300000291355
SPP4Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-12];multispecies_spp4_215351225519840342200000000004651930004910244
SPP5Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Blautia;multispecies_spp5_300000000000000000029700000
SPPN1Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;multigenus;multispecies_sppn1_2_nov_95.918%0000000000075000000000000
SPPN10Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;multigenus;multispecies_sppn10_2_nov_95.918%026603240311253000311032162618200233000000
SPPN11Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;multigenus;multispecies_sppn11_2_nov_95.465%0000384000000000217000000000
SPPN12Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Rikenellaceae;Alistipes;multispecies_sppn12_2_nov_96.304%00169000000249000266024940805610274000
SPPN13Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;multigenus;multispecies_sppn13_5_nov_94.570%09212650038200000000000000033100
SPPN14Bacteria;Actinobacteria;Actinomycetia;Kineosporiales;Kineosporiaceae;multigenus;multispecies_sppn14_2_nov_82.889%00030000000010500000000440000
SPPN15Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];Eubacteriales_[G-1];multispecies_sppn15_2_nov_97.511%00000054200023100000000002370228
SPPN16Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;multigenus;multispecies_sppn16_2_nov_96.833%0000420481000000000000000000
SPPN17Bacteria;Firmicutes;Clostridia;Eubacteriales;Eubacteriales_[F-1];multigenus;multispecies_sppn17_2_nov_95.928%00000026400014700150297000000000
SPPN18Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;multigenus;multispecies_sppn18_2_nov_92.063%49500000000000000000000000
SPPN19Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;multigenus;multispecies_sppn19_3_nov_96.818%00000000000002430152069000000
SPPN2Bacteria;Bacteroidetes;Bacteroidetes_[C-1];Bacteroidetes_[O-1];Bacteroidetes_[F-1];Bacteroidetes_[G-3];multispecies_sppn2_2_nov_87.554%215447829479432447001460005524934204615834720003990487
SPPN20Bacteria;Firmicutes;Clostridia;Eubacteriales;multifamily;multigenus;multispecies_sppn20_3_nov_95.455%0000002740000000000168000000
SPPN21Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Roseburia;multispecies_sppn21_3_nov_95.711%00000000003860000000000000
SPPN22Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;multigenus;multispecies_sppn22_2_nov_95.465%0000000000025900000000000118
SPPN23Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;multigenus;multispecies_sppn23_2_nov_96.818%0000000000000595019700000000
SPPN24Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;multigenus;multispecies_sppn24_2_nov_93.878%02730000000000000000000000
SPPN25Bacteria;Firmicutes;Clostridia;Eubacteriales;multifamily;multigenus;multispecies_sppn25_3_nov_96.145%00000000000000000261000000
SPPN26Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Anaerotignum;multispecies_sppn26_2_nov_94.808%00000000000018300000000000
SPPN27Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;multigenus;multispecies_sppn27_2_nov_93.665%00000000000000000157000000
SPPN4Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Lachnospiraceae_[G-11];multispecies_sppn4_2_nov_96.847%0707000090601186051859700006750000000
SPPN5Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;multigenus;multispecies_sppn5_2_nov_97.279%0000049541301483000286603298290028000000205
SPPN6Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;multispecies_sppn6_2_nov_96.312%00231144243025132621424925453120200002563554102650227161
SPPN7Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;multigenus;multispecies_sppn7_2_nov_92.777%0381000172009930746000000789000011420
SPPN8Bacteria;Firmicutes;Clostridia;multiorder;multifamily;multigenus;multispecies_sppn8_3_nov_95.011%000420010730000112506940017300000000
SPPN9Bacteria;Firmicutes;Clostridia;multiorder;multifamily;multigenus;multispecies_sppn9_2_nov_93.002%4042673801432111012543020128046839717309811207000000000
 
 
Download OTU Tables at Different Taxonomy Levels
PhylumCount*: Relative**: CLR***:
ClassCount*: Relative**: CLR***:
OrderCount*: Relative**: CLR***:
FamilyCount*: Relative**: CLR***:
GenusCount*: Relative**: CLR***:
SpeciesCount*: Relative**: CLR***:
* Read count
** Relative abundance (count/total sample count)
*** Centered log ratio transformed abundance
;
 
The species listed in the table has full taxonomy and a dynamically assigned species ID specific to this report. When some reads match with the reference sequences of more than one species equally (i.e., same percent identiy and alignmnet coverage), they can't be assigned to a particular species. Instead, they are assigned to multiple species with the species notaton "s__multispecies_spp2_2". In this notation, spp2 is the dynamic ID assigned to these reads that hit multiple sequences and the "_2" at the end of the notation means there are two species in the spp2.

You can look up which species are included in the multi-species assignment, in this table below:
 
 
 
 
Another type of notation is "s__multispecies_sppn2_2", in which the "n" in the sppn2 means it's a potential novel species because all the reads in this species have < 98% idenity to any of the reference sequences. They were grouped together based on de novo OTU clustering at 98% identity cutoff. And then a representative sequence was chosed to BLASTN search against the reference database to find the closest match (but will still be < 98%). This representative sequence also matched equally to more than one species, hence the "spp" was given in the label.
 
 

Taxonomy Bar Plots for All Samples

 
 

Taxonomy Bar Plots for Individual Comparison Groups

 
 
Comparison No.Comparison NameFamiliesGeneraSpecies
Comparison 1Group C1 vs Group C2PDFSVGPDFSVGPDFSVG
Comparison 2Group H1 vs Group H2PDFSVGPDFSVGPDFSVG
Comparison 3Group HA1 vs Group HA2PDFSVGPDFSVGPDFSVG
Comparison 4Group A1 vs Group A2PDFSVGPDFSVGPDFSVG
 
 

VIII. Analysis - Alpha Diversity

 

In ecology, alpha diversity (α-diversity) is the mean species diversity in sites or habitats at a local scale. The term was introduced by R. H. Whittaker[1][2] together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites or habitats at a more local scale (alpha diversity) and the differentiation among those habitats (beta diversity).


References:
Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338. doi:10.2307/1943563
Whittaker, R. H. (1972). Evolution and Measurement of Species Diversity. Taxon, 21, 213-251. doi:10.2307/1218190

 

Alpha Diversity Analysis by Rarefaction

Diversity measures are affected by the sampling depth. Rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples. Rarefaction curves generally grow rapidly at first, as the most common species are found, but the curves plateau as only the rarest species remain to be sampled.


References:
Willis AD. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol. 2019 Oct 23;10:2407. doi: 10.3389/fmicb.2019.02407. PMID: 31708888; PMCID: PMC6819366.

 
 
 

Boxplot of Alpha-diversity Indices

The two main factors taken into account when measuring diversity are richness and evenness. Richness is a measure of the number of different kinds of organisms present in a particular area. Evenness compares the similarity of the population size of each of the species present. There are many different ways to measure the richness and evenness. These measurements are called "estimators" or "indices". Below is a diversity of 3 commonly used indices showing the values for all the samples (dots) and in groups (boxes).

 
Alpha Diversity Box Plots for All Groups
 
 
 
 
 
 
 
Alpha Diversity Box Plots for Individual Comparisons
 
Comparison 1Group C1 vs Group C2View in PDFView in SVG
Comparison 2Group H1 vs Group H2View in PDFView in SVG
Comparison 3Group HA1 vs Group HA2View in PDFView in SVG
Comparison 4Group A1 vs Group A2View in PDFView in SVG
 
 
 

Group Significance of Alpha-diversity Indices

To test whether the alpha diversity among different comparison groups are different statisticall, we use the Kruskal Wallis H test provided the "alpha-group-significance" fucntion in the QIIME 2 "diversity" package. Kruskal Wallis H test is the non-parametric alternative to the One Way ANOVA. Non-parametric means that the test doesn’t assume your data comes from a particular distribution. The H test is used when the assumptions for ANOVA aren’t met (like the assumption of normality). It is sometimes called the one-way ANOVA on ranks, as the ranks of the data values are used in the test rather than the actual data points. The H test determines whether the medians of two or more groups are different.

Below are the Kruskal Wallis H test results for each comparison based on three different alpha diversity measures: 1) Observed species (features), 2) Shannon index, and 3) Simpson index.

 
 
Comparison 1.Group C1 vs Group C2Observed FeaturesShannon IndexSimpson Index
Comparison 2.Group H1 vs Group H2Observed FeaturesShannon IndexSimpson Index
Comparison 3.Group HA1 vs Group HA2Observed FeaturesShannon IndexSimpson Index
Comparison 4.Group A1 vs Group A2Observed FeaturesShannon IndexSimpson Index
 
 

IX. Analysis - Beta Diversity

 

NMDS and PCoA Plots

Beta diversity compares the similarity (or dissimilarity) of microbial profiles between different groups of samples. There are many different similarity/dissimilarity metrics. In general, they can be quantitative (using sequence abundance, e.g., Bray-Curtis or weighted UniFrac) or binary (considering only presence-absence of sequences, e.g., binary Jaccard or unweighted UniFrac). They can be even based on phylogeny (e.g., UniFrac metrics) or not (non-UniFrac metrics, such as Bray-Curtis, etc.).

For microbiome studies, species profiles of samples can be compared with the Bray-Curtis dissimilarity, which is based on the count data type. The pair-wise Bray-Curtis dissimilarity matrix of all samples can then be subject to either multi-dimensional scaling (MDS, also known as PCoA) or non-metric MDS (NMDS).

MDS/PCoA is a scaling or ordination method that starts with a matrix of similarities or dissimilarities between a set of samples and aims to produce a low-dimensional graphical plot of the data in such a way that distances between points in the plot are close to original dissimilarities.

NMDS is similar to MDS, however it does not use the dissimilarities data, instead it converts them into the ranks and use these ranks in the calculation.

In our beta diversity analysis, Bray-Curtis dissimilarity matrix was first calculated and then plotted by the PCoA and NMDS separately. Below are beta diveristy results for all groups together:

 
 
NMDS and PCoA Plots for All Groups
 
 
 
 
 

The above PCoA and NMDS plots are based on count data. The count data can also be transformed into centered log ratio (CLR) for each species. The CLR data is no longer count data and cannot be used in Bray-Curtis dissimilarity calculation. Instead CLR can be compared with Euclidean distances. When CLR data are compared by Euclidean distance, the distance is also called Aitchison distance.

Below are the NMDS and PCoA plots of the Aitchison distances of the samples:

 
 
 
 
 
 
 
NMDS and PCoA Plots for Individual Comparisons
 
 
Comparison No.Comparison NameNMDAPCoA
Bray-CurtisCLR EuclideanBray-CurtisCLR Euclidean
Comparison 1Group C1 vs Group C2PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 2Group H1 vs Group H2PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 3Group HA1 vs Group HA2PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 4Group A1 vs Group A2PDFSVGPDFSVGPDFSVGPDFSVG
 
 
 
 
 

Interactive 3D PCoA Plots - Bray-Curtis Dissimilarity

 
 
 

Interactive 3D PCoA Plots - Euclidean Distance

 
 
 

Interactive 3D PCoA Plots - Correlation Coefficients

 
 
 

Group Significance of Beta-diversity Indices

To test whether the between-group dissimilarities are significantly greater than the within-group dissimilarities, the "beta-group-significance" function provided in the QIIME 2 "diversity" package was used with PERMANOVA (permutational multivariate analysis of variance) as the group significant testing method.

Three beta diversity matrics were used: 1) Bray–Curtis dissimilarity 2) Correlation coefficient matrix , and 3) Aitchison distance (Euclidean distance between clr-transformed compositions).

 
 
Comparison 1.Group C1 vs Group C2Bray–CurtisCorrelationAitchison
Comparison 2.Group H1 vs Group H2Bray–CurtisCorrelationAitchison
Comparison 3.Group HA1 vs Group HA2Bray–CurtisCorrelationAitchison
Comparison 4.Group A1 vs Group A2Bray–CurtisCorrelationAitchison
 
 
 

X. Analysis - Differential Abundance

16S rRNA next generation sequencing (NGS) generates a fixed number of reads that reflect the proportion of different species in a sample, i.e., the relative abundance of species, instead of the absolute abundance. In Mathematics, measurements involving probabilities, proportions, percentages, and ppm can all be thought of as compositional data. This makes the microbiome read count data “compositional” (Gloor et al, 2017). In general, compositional data represent parts of a whole which only carry relative information (http://www.compositionaldata.com/).

The problem of microbiome data being compositional arises when comparing two groups of samples for identifying “differentially abundant” species. A species with the same absolute abundance between two conditions, its relative abundances in the two conditions (e.g., percent abundance) can become different if the relative abundance of other species change greatly. This problem can lead to incorrect conclusion in terms of differential abundance for microbial species in the samples.

When studying differential abundance (DA), the current better approach is to transform the read count data into log ratio data. The ratios are calculated between read counts of all species in a sample to a “reference” count (e.g., mean read count of the sample). The log ratio data allow the detection of DA species without being affected by percentage bias mentioned above

In this report, a compositional DA analysis tool “ANCOM” (analysis of composition of microbiomes) was used. ANCOM transforms the count data into log-ratios and thus is more suitable for comparing the composition of microbiomes in two or more populations. "ANCOM" generates a table of features with W-statistics and whether the null hypothesis is rejected. The “W” is the W-statistic, or number of features that a single feature is tested to be significantly different against. Hence the higher the "W" the more statistical sifgnificane that a feature/species is differentially abundant.


References:

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017 Nov 15;8:2224. doi: 10.3389/fmicb.2017.02224. PMID: 29187837; PMCID: PMC5695134.

Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015 May 29;26:27663. doi: 10.3402/mehd.v26.27663. PMID: 26028277; PMCID: PMC4450248.

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 

ANCOM Differential Abundance Analysis

 
ANCOM Results for Individual Comparisons
Comparison No.Comparison Name
Comparison 1.Group C1 vs Group C2
Comparison 2.Group H1 vs Group H2
Comparison 3.Group HA1 vs Group HA2
Comparison 4.Group A1 vs Group A2
 
 

ANCOM-BC Differential Abundance Analysis

 

Starting with version V1.2, we also include the results of ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) (Lin and Peddada 2020). ANCOM-BC is an updated version of "ANCOM" that: (a) provides statistically valid test with appropriate p-values, (b) provides confidence intervals for differential abundance of each taxon, (c) controls the False Discovery Rate (FDR), (d) maintains adequate power, and (e) is computationally simple to implement. The bias correction (BC) addresses a challenging problem of the bias introduced by differences in the sampling fractions across samples. This bias has been a major hurdle in performing DA analysis of microbiome data. ANCOM-BC estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework.

References:

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 
ANCOM-BC Results for Individual Comparisons
 
Comparison No.Comparison Name
Comparison 1.Group C1 vs Group C2
Comparison 2.Group H1 vs Group H2
Comparison 3.Group HA1 vs Group HA2
Comparison 4.Group A1 vs Group A2
 
 
 

LEfSe - Linear Discriminant Analysis Effect Size

LEfSe (Linear Discriminant Analysis Effect Size) is an alternative method to find "organisms, genes, or pathways that consistently explain the differences between two or more microbial communities" (Segata et al., 2011). Specifically, LEfSe uses rank-based Kruskal-Wallis (KW) sum-rank test to detect features with significant differential (relative) abundance with respect to the class of interest. Since it is rank-based, instead of proportional based, the differential species identified among the comparison groups is less biased (than percent abundance based).

Reference:

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011 Jun 24;12(6):R60. doi: 10.1186/gb-2011-12-6-r60. PMID: 21702898; PMCID: PMC3218848.

 
Group C1 vs Group C2
 
 
 
 
 
 
 
LEfSe Results for All Comparisons
 
Comparison No.Comparison Name
Comparison 1.Group C1 vs Group C2
Comparison 2.Group H1 vs Group H2
Comparison 3.Group HA1 vs Group HA2
Comparison 4.Group A1 vs Group A2
 
 

XI. Analysis - Heatmap Profile

 

Species vs Sample Abundance Heatmap for All Samples

 
 
 

Heatmaps for Individual Comparisons

 
A) Two-way clustering - clustered on both columns (Samples) and rows (organism)
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Group C1 vs Group C2PDFSVGPDFSVGPDFSVG
Comparison 2Group H1 vs Group H2PDFSVGPDFSVGPDFSVG
Comparison 3Group HA1 vs Group HA2PDFSVGPDFSVGPDFSVG
Comparison 4Group A1 vs Group A2PDFSVGPDFSVGPDFSVG
 
 
B) One-way clustering - clustered on rows (organism) only
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Group C1 vs Group C2PDFSVGPDFSVGPDFSVG
Comparison 2Group H1 vs Group H2PDFSVGPDFSVGPDFSVG
Comparison 3Group HA1 vs Group HA2PDFSVGPDFSVGPDFSVG
Comparison 4Group A1 vs Group A2PDFSVGPDFSVGPDFSVG
 
 
C) No clustering
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Group C1 vs Group C2PDFSVGPDFSVGPDFSVG
Comparison 2Group H1 vs Group H2PDFSVGPDFSVGPDFSVG
Comparison 3Group HA1 vs Group HA2PDFSVGPDFSVGPDFSVG
Comparison 4Group A1 vs Group A2PDFSVGPDFSVGPDFSVG
 
 

XII. Analysis - Network Association

To analyze the co-occurrence or co-exclusion between microbial species among different samples, network correlation analysis tools are usually used for this purpose. However, microbiome count data are compositional. If count data are normalized to the total number of counts in the sample, the data become not independent and traditional statistical metrics (e.g., correlation) for the detection of specie-species relationships can lead to spurious results. In addition, sequencing-based studies typically measure hundreds of OTUs (species) on few samples; thus, inference of OTU-OTU association networks is severely under-powered. Here we use SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues (Kurtz et al., 2015). SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. SPIEC-EASI provides two algorithms for network inferencing – 1) Meinshausen-Bühlmann's neighborhood selection (MB method) and inverse covariance selection (GLASSO method, i.e., graphical least absolute shrinkage and selection operator). This is fundamentally distinct from SparCC, which essentially estimate pairwise correlations. In addition to these two methods, we provide the results of a third method - SparCC (Sparse Correlations for Compositional Data)(Friedman & Alm 2012), which is also a method for inferring correlations from compositional data. SparCC estimates the linear Pearson correlations between the log-transformed components.


References:

Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015 May 7;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226. PMID: 25950956; PMCID: PMC4423992.

Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20. PMID: 23028285; PMCID: PMC3447976.

 

SPIEC-EASI Network Inference by Neighborhood Selection (MB Method)

 

 

 

Association Network Inference by SparCC

 

 

 
 

Copyright FOMC 2022