FOMC Service Report

16S rRNA Gene V1V3 Amplicon Sequencing

Version V1.43

Version History

The Forsyth Institute, Cambridge, MA, USA
July 21, 2023

Project ID: FOMC9928_3


I. Project Summary

Project FOMC9928_3 services include NGS sequencing of the V1V3 region of the 16S rRNA gene amplicons from the samples. First and foremost, please download this report, as well as the sequence raw data from the download links provided below. These links will expire after 60 days. We cannot guarantee the availability of your data after 60 days.

Full Bioinformatics analysis service was requested. We provide many analyses, starting from the raw sequence quality and noise filtering, pair reads merging, as well as chimera filtering for the sequences, using the DADA2 denosing algorithm and pipeline.

We also provide many downstream analyses such as taxonomy assignment, alpha and beta diversity analyses, and differential abundance analysis.

For taxonomy assignment, most informative would be the taxonomy barplots. We provide an interactive barplots to show the relative abundance of microbes at different taxonomy levels (from Phylum to species) that you can choose.

If you specify which groups of samples you want to compare for differential abundance, we provide both ANCOM and LEfSe differential abundance analysis.

 

II. Workflow Checklist

1.Sample Received
2.Sample Quality Evaluated
3.Sample Prepared for Sequencing
4.Next-Gen Sequencing
5.Sequence Quality Check
6.Absolute Abundance
7.Report and Raw Sequence Data Available for Download
8.Bioinformatics Analysis - Reads Processing (DADA2 Quality Trimming, Denoising, Paired Reads Merging)
9.Bioinformatics Analysis - Reads Taxonomy Assignment
10.Bioinformatics Analysis - Alpha Diversity Analysis
11.Bioinformatics Analysis - Beta Diversity Analysis
12.Bioinformatics Analysis - Differential Abundance Analysis
13.Bioinformatics Analysis - Heatmap Profile
14.Bioinformatics Analysis - Network Association
 

III. NGS Sequencing

The samples were processed and analyzed with the ZymoBIOMICS® Service: Targeted Metagenomic Sequencing (Zymo Research, Irvine, CA).

DNA Extraction: If DNA extraction was performed, one of three different DNA extraction kits was used depending on the sample type and sample volume and were used according to the manufacturer’s instructions, unless otherwise stated. The kit used in this project is marked below:

ZymoBIOMICS® DNA Miniprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS® DNA Microprep Kit (Zymo Research, Irvine, CA)
ZymoBIOMICS®-96 MagBead DNA Kit (Zymo Research, Irvine, CA)
N/A (DNA Extraction Not Performed)
Elution Volume: 50µL
Additional Notes: NA

Targeted Library Preparation: The DNA samples were prepared for targeted sequencing with the Quick-16S™ NGS Library Prep Kit (Zymo Research, Irvine, CA). These primers were custom designed by Zymo Research to provide the best coverage of the 16S gene while maintaining high sensitivity. The primer sets used in this project are marked below:

Quick-16S™ Primer Set V1-V2 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V1-V3 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V3-V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V4 (Zymo Research, Irvine, CA)
Quick-16S™ Primer Set V6-V8 (Zymo Research, Irvine, CA)
Other: NA
Additional Notes: NA

The sequencing library was prepared using an innovative library preparation process in which PCR reactions were performed in real-time PCR machines to control cycles and therefore limit PCR chimera formation. The final PCR products were quantified with qPCR fluorescence readings and pooled together based on equal molarity. The final pooled library was cleaned up with the Select-a-Size DNA Clean & Concentrator™ (Zymo Research, Irvine, CA), then quantified with TapeStation® (Agilent Technologies, Santa Clara, CA) and Qubit® (Thermo Fisher Scientific, Waltham, WA).

Control Samples: The ZymoBIOMICS® Microbial Community Standard (Zymo Research, Irvine, CA) was used as a positive control for each DNA extraction, if performed. The ZymoBIOMICS® Microbial Community DNA Standard (Zymo Research, Irvine, CA) was used as a positive control for each targeted library preparation. Negative controls (i.e. blank extraction control, blank library preparation control) were included to assess the level of bioburden carried by the wet-lab process.

Sequencing: The final library was sequenced on Illumina® MiSeq™ with a V3 reagent kit (600 cycles). The sequencing was performed with 10% PhiX spike-in.

Absolute Abundance Quantification*: A quantitative real-time PCR was set up with a standard curve. The standard curve was made with plasmid DNA containing one copy of the 16S gene and one copy of the fungal ITS2 region prepared in 10-fold serial dilutions. The primers used were the same as those used in Targeted Library Preparation. The equation generated by the plasmid DNA standard curve was used to calculate the number of gene copies in the reaction for each sample. The PCR input volume (2 µl) was used to calculate the number of gene copies per microliter in each DNA sample.
The number of genome copies per microliter DNA sample was calculated by dividing the gene copy number by an assumed number of gene copies per genome. The value used for 16S copies per genome is 4. The value used for ITS copies per genome is 200. The amount of DNA per microliter DNA sample was calculated using an assumed genome size of 4.64 x 106 bp, the genome size of Escherichia coli, for 16S samples, or an assumed genome size of 1.20 x 107 bp, the genome size of Saccharomyces cerevisiae, for ITS samples. This calculation is shown below:

Calculated Total DNA = Calculated Total Genome Copies × Assumed Genome Size (4.64 × 106 bp) ×
Average Molecular Weight of a DNA bp (660 g/mole/bp) ÷ Avogadro’s Number (6.022 x 1023/mole)


* Absolute Abundance Quantification is only available for 16S and ITS analyses.

The absolute abundance standard curve data can be viewed in Excel here:

The absolute abundance standard curve is shown below:

Absolute Abundance Standard Curve

 

IV. Complete Report Download

The complete report of your project, including all links in this report, can be downloaded by clicking the link provided below. The downloaded file is a compressed ZIP file and once unzipped, open the file “REPORT.html” (may only shown as "REPORT" in your computer) by double clicking it. Your default web browser will open it and you will see the exact content of this report.

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Complete report download link:

To view the report, please follow the following steps:
1.Download the .zip file from the report link above.
2.Extract all the contents of the downloaded .zip file to your desktop.
3.Open the extracted folder and find the "REPORT.html" (may shown as only "REPORT").
4.Open (double-clicking) the REPORT.html file. Your default browser will open the top age of the complete report. Within the report, there are links to view all the analyses performed for the project.

 

V. Raw Sequence Data Download

The raw NGS sequence data is available for download with the link provided below. The data is a compressed ZIP file and can be unzipped to individual sequence files. Since this is a pair-end sequencing, each of your samples is represented by two sequence files, one for READ 1, with the file extension “*_R1.fastq.gz”, another READ 2, with the file extension “*_R1.fastq.gz”. The files are in FASTQ format and are compressed. FASTQ format is a text-based data format for storing both a biological sequence and its corresponding quality scores. Most sequence analysis software will be able to open them. The Sample IDs associated with the R1 and R2 fastq files are listed in the table below:

Sample IDOriginal Sample IDRead 1 File NameRead 2 File Name
F9928.S10original sample ID herezr9928_10V3V4_R1.fastq.gzzr9928_10V3V4_R2.fastq.gz
F9928.S11original sample ID herezr9928_11V3V4_R1.fastq.gzzr9928_11V3V4_R2.fastq.gz
F9928.S12original sample ID herezr9928_12V3V4_R1.fastq.gzzr9928_12V3V4_R2.fastq.gz
F9928.S13original sample ID herezr9928_13V3V4_R1.fastq.gzzr9928_13V3V4_R2.fastq.gz
F9928.S14original sample ID herezr9928_14V3V4_R1.fastq.gzzr9928_14V3V4_R2.fastq.gz
F9928.S15original sample ID herezr9928_15V3V4_R1.fastq.gzzr9928_15V3V4_R2.fastq.gz
F9928.S16original sample ID herezr9928_16V3V4_R1.fastq.gzzr9928_16V3V4_R2.fastq.gz
F9928.S17original sample ID herezr9928_17V3V4_R1.fastq.gzzr9928_17V3V4_R2.fastq.gz
F9928.S18original sample ID herezr9928_18V3V4_R1.fastq.gzzr9928_18V3V4_R2.fastq.gz
F9928.S19original sample ID herezr9928_19V3V4_R1.fastq.gzzr9928_19V3V4_R2.fastq.gz
F9928.S01original sample ID herezr9928_1V3V4_R1.fastq.gzzr9928_1V3V4_R2.fastq.gz
F9928.S20original sample ID herezr9928_20V3V4_R1.fastq.gzzr9928_20V3V4_R2.fastq.gz
F9928.S21original sample ID herezr9928_21V3V4_R1.fastq.gzzr9928_21V3V4_R2.fastq.gz
F9928.S22original sample ID herezr9928_22V3V4_R1.fastq.gzzr9928_22V3V4_R2.fastq.gz
F9928.S23original sample ID herezr9928_23V3V4_R1.fastq.gzzr9928_23V3V4_R2.fastq.gz
F9928.S24original sample ID herezr9928_24V3V4_R1.fastq.gzzr9928_24V3V4_R2.fastq.gz
F9928.S25original sample ID herezr9928_25V3V4_R1.fastq.gzzr9928_25V3V4_R2.fastq.gz
F9928.S26original sample ID herezr9928_26V3V4_R1.fastq.gzzr9928_26V3V4_R2.fastq.gz
F9928.S27original sample ID herezr9928_27V3V4_R1.fastq.gzzr9928_27V3V4_R2.fastq.gz
F9928.S28original sample ID herezr9928_28V3V4_R1.fastq.gzzr9928_28V3V4_R2.fastq.gz
F9928.S29original sample ID herezr9928_29V3V4_R1.fastq.gzzr9928_29V3V4_R2.fastq.gz
F9928.S02original sample ID herezr9928_2V3V4_R1.fastq.gzzr9928_2V3V4_R2.fastq.gz
F9928.S30original sample ID herezr9928_30V3V4_R1.fastq.gzzr9928_30V3V4_R2.fastq.gz
F9928.S31original sample ID herezr9928_31V3V4_R1.fastq.gzzr9928_31V3V4_R2.fastq.gz
F9928.S32original sample ID herezr9928_32V3V4_R1.fastq.gzzr9928_32V3V4_R2.fastq.gz
F9928.S33original sample ID herezr9928_33V3V4_R1.fastq.gzzr9928_33V3V4_R2.fastq.gz
F9928.S34original sample ID herezr9928_34V3V4_R1.fastq.gzzr9928_34V3V4_R2.fastq.gz
F9928.S35original sample ID herezr9928_35V3V4_R1.fastq.gzzr9928_35V3V4_R2.fastq.gz
F9928.S36original sample ID herezr9928_36V3V4_R1.fastq.gzzr9928_36V3V4_R2.fastq.gz
F9928.S37original sample ID herezr9928_37V3V4_R1.fastq.gzzr9928_37V3V4_R2.fastq.gz
F9928.S38original sample ID herezr9928_38V3V4_R1.fastq.gzzr9928_38V3V4_R2.fastq.gz
F9928.S39original sample ID herezr9928_39V3V4_R1.fastq.gzzr9928_39V3V4_R2.fastq.gz
F9928.S03original sample ID herezr9928_3V3V4_R1.fastq.gzzr9928_3V3V4_R2.fastq.gz
F9928.S40original sample ID herezr9928_40V3V4_R1.fastq.gzzr9928_40V3V4_R2.fastq.gz
F9928.S41original sample ID herezr9928_41V3V4_R1.fastq.gzzr9928_41V3V4_R2.fastq.gz
F9928.S42original sample ID herezr9928_42V3V4_R1.fastq.gzzr9928_42V3V4_R2.fastq.gz
F9928.S43original sample ID herezr9928_43V3V4_R1.fastq.gzzr9928_43V3V4_R2.fastq.gz
F9928.S44original sample ID herezr9928_44V3V4_R1.fastq.gzzr9928_44V3V4_R2.fastq.gz
F9928.S45original sample ID herezr9928_45V3V4_R1.fastq.gzzr9928_45V3V4_R2.fastq.gz
F9928.S46original sample ID herezr9928_46V3V4_R1.fastq.gzzr9928_46V3V4_R2.fastq.gz
F9928.S47original sample ID herezr9928_47V3V4_R1.fastq.gzzr9928_47V3V4_R2.fastq.gz
F9928.S48original sample ID herezr9928_48V3V4_R1.fastq.gzzr9928_48V3V4_R2.fastq.gz
F9928.S49original sample ID herezr9928_49V3V4_R1.fastq.gzzr9928_49V3V4_R2.fastq.gz
F9928.S04original sample ID herezr9928_4V3V4_R1.fastq.gzzr9928_4V3V4_R2.fastq.gz
F9928.S50original sample ID herezr9928_50V3V4_R1.fastq.gzzr9928_50V3V4_R2.fastq.gz
F9928.S51original sample ID herezr9928_51V3V4_R1.fastq.gzzr9928_51V3V4_R2.fastq.gz
F9928.S52original sample ID herezr9928_52V3V4_R1.fastq.gzzr9928_52V3V4_R2.fastq.gz
F9928.S53original sample ID herezr9928_53V3V4_R1.fastq.gzzr9928_53V3V4_R2.fastq.gz
F9928.S54original sample ID herezr9928_54V3V4_R1.fastq.gzzr9928_54V3V4_R2.fastq.gz
F9928.S55original sample ID herezr9928_55V3V4_R1.fastq.gzzr9928_55V3V4_R2.fastq.gz
F9928.S56original sample ID herezr9928_56V3V4_R1.fastq.gzzr9928_56V3V4_R2.fastq.gz
F9928.S57original sample ID herezr9928_57V3V4_R1.fastq.gzzr9928_57V3V4_R2.fastq.gz
F9928.S58original sample ID herezr9928_58V3V4_R1.fastq.gzzr9928_58V3V4_R2.fastq.gz
F9928.S59original sample ID herezr9928_59V3V4_R1.fastq.gzzr9928_59V3V4_R2.fastq.gz
F9928.S05original sample ID herezr9928_5V3V4_R1.fastq.gzzr9928_5V3V4_R2.fastq.gz
F9928.S60original sample ID herezr9928_60V3V4_R1.fastq.gzzr9928_60V3V4_R2.fastq.gz
F9928.S61original sample ID herezr9928_61V3V4_R1.fastq.gzzr9928_61V3V4_R2.fastq.gz
F9928.S62original sample ID herezr9928_62V3V4_R1.fastq.gzzr9928_62V3V4_R2.fastq.gz
F9928.S63original sample ID herezr9928_63V3V4_R1.fastq.gzzr9928_63V3V4_R2.fastq.gz
F9928.S06original sample ID herezr9928_6V3V4_R1.fastq.gzzr9928_6V3V4_R2.fastq.gz
F9928.S07original sample ID herezr9928_7V3V4_R1.fastq.gzzr9928_7V3V4_R2.fastq.gz
F9928.S08original sample ID herezr9928_8V3V4_R1.fastq.gzzr9928_8V3V4_R2.fastq.gz
F9928.S09original sample ID herezr9928_9V3V4_R1.fastq.gzzr9928_9V3V4_R2.fastq.gz

Please download and save the file to your computer storage device. The download link will expire after 60 days upon your receiving of this report.

Raw sequence data download link:

 

VI. Analysis - DADA2 Read Processing

What is DADA2?

DADA2 is a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. DADA2 identified more real variants and output fewer spurious sequences than other methods.

DADA2’s advantage is that it uses more of the data. The DADA2 error model incorporates quality information, which is ignored by all other methods after filtering. The DADA2 error model incorporates quantitative abundances, whereas most other methods use abundance ranks if they use abundance at all. The DADA2 error model identifies the differences between sequences, eg. A->C, whereas other methods merely count the mismatches. DADA2 can parameterize its error model from the data itself, rather than relying on previous datasets that may or may not reflect the PCR and sequencing protocols used in your study.

DADA2 Publication: Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016 Jul;13(7):581-3. doi: 10.1038/nmeth.3869. Epub 2016 May 23. PMID: 27214047; PMCID: PMC4927377.

DADA2 Software Package is available as an R package at : https://benjjneb.github.io/dada2/index.html

Analysis Procedures:

DADA2 pipeline includes several tools for read quality control, including quality filtering, trimming, denoising, pair merging and chimera filtering. Below are the major processing steps of DADA2:

Step 1. Read trimming based on sequence quality The quality of NGS Illumina sequences often decreases toward the end of the reads. DADA2 allows to trim off the poor quality read ends in order to improve the error model building and pair mergicing performance.

Step 2. Learn the Error Rates The DADA2 algorithm makes use of a parametric error model (err) and every amplicon dataset has a different set of error rates. The learnErrors method learns this error model from the data, by alternating estimation of the error rates and inference of sample composition until they converge on a jointly consistent solution. As in many machine-learning problems, the algorithm must begin with an initial guess, for which the maximum possible error rates in this data are used (the error rates if only the most abundant sequence is correct and all the rest are errors).

Step 3. Infer amplicon sequence variants (ASVs) based on the error model built in previous step. This step is also called sequence "denoising". The outcome of this step is a list of ASVs that are the equivalent of oligonucleotides.

Step 4. Merge paired reads. If the sequencing products are read pairs, DADA2 will merge the R1 and R2 ASVs into single sequences. Merging is performed by aligning the denoised forward reads with the reverse-complement of the corresponding denoised reverse reads, and then constructing the merged “contig” sequences. By default, merged sequences are only output if the forward and reverse reads overlap by at least 12 bases, and are identical to each other in the overlap region (but these conditions can be changed via function arguments).

Step 5. Remove chimera. The core dada method corrects substitution and indel errors, but chimeras remain. Fortunately, the accuracy of sequence variants after denoising makes identifying chimeric ASVs simpler than when dealing with fuzzy OTUs. Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a right-segment from two more abundant “parent” sequences. The frequency of chimeric sequences varies substantially from dataset to dataset, and depends on on factors including experimental procedures and sample complexity.

Results

1. Read Quality Plots NGS sequence analaysis starts with visualizing the quality of the sequencing. Below are the quality plots of the first sample for the R1 and R2 reads separately. In gray-scale is a heat map of the frequency of each quality score at each base position. The mean quality score at each position is shown by the green line, and the quartiles of the quality score distribution by the orange lines. The forward reads are usually of better quality. It is a common practice to trim the last few nucleotides to avoid less well-controlled errors that can arise there. The trimming affects the downstream steps including error model building, merging and chimera calling. FOMC uses an empirical approach to test many combinations of different trim length in order to achieve best final amplicon sequence variants (ASVs), see the next section “Optimal trim length for ASVs”.

Quality plots for all samples:

2. Optimal trim length for ASVs The final number of merged and chimera-filtered ASVs depends on the quality filtering (hence trimming) in the very beginning of the DADA2 pipeline. In order to achieve highest number of ASVs, an empirical approach was used -

  1. Create a random subset of each sample consisting of 5,000 R1 and 5,000 R2 (to reduce computation time)
  2. Trim 10 bases at a time from the ends of both R1 and R2 up to 50 bases
  3. For each combination of trimmed length (e.g., 300x300, 300x290, 290x290 etc), the trimmed reads are subject to the entire DADA2 pipeline for chimera-filtered merged ASVs
  4. The combination with highest percentage of the input reads becoming final ASVs is selected for the complete set of data

Below is the result of such operation, showing ASV percentages of total reads for all trimming combinations (1st Column = R1 lengths in bases; 1st Row = R2 lengths in bases):

R1/R2281271261251241231
32137.19%36.90%36.80%37.19%37.20%37.27%
31136.91%36.41%36.46%36.67%36.74%36.91%
30137.06%36.55%36.75%37.02%37.05%37.15%
29136.93%36.52%36.62%36.95%36.68%37.11%
28136.60%36.36%36.16%36.29%35.88%36.32%
27136.40%36.18%35.87%36.12%35.64%36.15%

Based on the above result, the trim length combination of R1 = 321 bases and R2 = 231 bases (highlighted red above), was chosen for generating final ASVs for all sequences. This combination generated highest number of merged non-chimeric ASVs and was used for downstream analyses, if requested.

3. Error plots from learning the error rates After DADA2 building the error model for the set of data, it is always worthwhile, as a sanity check if nothing else, to visualize the estimated error rates. The error rates for each possible transition (A→C, A→G, …) are shown below. Points are the observed error rates for each consensus quality score. The black line shows the estimated error rates after convergence of the machine-learning algorithm. The red line shows the error rates expected under the nominal definition of the Q-score. The ideal result would be the estimated error rates (black line) are a good fit to the observed rates (points), and the error rates drop with increased quality as expected.

Forward Read R1 Error Plot


Reverse Read R2 Error Plot

The PDF version of these plots are available here:

 

4. DADA2 Result Summary The table below shows the summary of the DADA2 analysis, tracking paired read counts of each samples for all the steps during DADA2 denoising process - including end-trimming (filtered), denoising (denoisedF, denoisedF), pair merging (merged) and chimera removal (nonchim).

Sample IDF9928.S01F9928.S02F9928.S03F9928.S04F9928.S05F9928.S06F9928.S07F9928.S08F9928.S09F9928.S10F9928.S11F9928.S12F9928.S13F9928.S14F9928.S15F9928.S16F9928.S17F9928.S18F9928.S19F9928.S20F9928.S21F9928.S22F9928.S23F9928.S24F9928.S25F9928.S26F9928.S27F9928.S28F9928.S29F9928.S30F9928.S31F9928.S32F9928.S33F9928.S34F9928.S35F9928.S36F9928.S37F9928.S38F9928.S39F9928.S40F9928.S41F9928.S42F9928.S43F9928.S44F9928.S45F9928.S46F9928.S47F9928.S48F9928.S49F9928.S50F9928.S51F9928.S52F9928.S53F9928.S54F9928.S55F9928.S56F9928.S57F9928.S58F9928.S59F9928.S60F9928.S61F9928.S62F9928.S63Row SumPercentage
input243,040183,185253,209270,130191,884224,212183,506259,962309,013179,684278,278216,011232,169247,009214,527236,789246,612271,206154,629211,045191,776181,290170,594221,395270,128246,994168,303196,189211,611207,058173,538189,203297,371237,999241,307298,999230,070204,339229,741225,464346,027236,952234,242341,344299,194197,031340,557284,011378,257230,817279,652273,366258,392231,108240,461238,817400,502216,021236,270162,021158,339243,026140,39414,966,270100.00%
filtered235,781177,501245,477261,710185,890217,656177,808252,058299,620174,345269,976209,302224,754239,530208,019229,475239,217263,131149,815204,435185,952175,786165,471214,552261,845239,453163,079190,362205,195200,937168,241183,510288,391230,867233,931289,800223,288197,883222,692218,630335,473229,621227,156331,010290,283191,121330,138274,989366,616223,901271,153265,243250,693224,202232,946231,559388,179209,467228,844157,068153,524235,660136,24514,510,45696.95%
denoisedF231,764175,037242,713254,530180,176212,518173,147246,216293,281173,855268,742206,434222,744237,789207,251228,889238,032259,885149,253201,906183,549168,937164,954212,489260,528238,019161,012188,452202,623197,929166,940181,849286,349228,930232,253287,761222,276196,454218,781212,370333,313227,621226,142329,603287,318189,610325,030270,225356,380221,983266,773263,975245,630218,760229,908228,667384,065208,308225,438154,392150,438232,689133,64714,326,53295.73%
denoisedR232,211175,033242,893255,973181,268213,458174,024247,125294,335173,488268,484206,353222,702237,517206,614228,349237,645260,448148,855201,874183,367170,906164,301212,071259,769237,410159,929188,249202,020197,157166,738181,862286,062228,814232,183287,431221,903196,229219,138212,970332,798227,389225,802329,024286,747189,804325,637270,901358,428221,261266,968263,189246,372220,103230,184228,822383,741207,902225,385154,096150,524233,389134,09314,329,71795.75%
merged224,969166,612239,484239,119165,210200,931162,140230,461278,839172,828266,752200,517217,861233,987205,510226,814235,650252,775147,851196,172177,339155,023162,415207,427256,162235,048154,903183,914194,669187,604163,850178,722282,424223,512229,264283,528219,762192,114206,591200,729328,223220,809222,830326,174281,141182,715314,122259,951334,482216,864258,263258,523232,780209,789223,293221,259375,767205,616218,958149,623144,445225,678126,11613,896,90392.85%
nonchim224,969166,612239,484239,119165,210200,931162,140230,461278,839172,828266,752200,517217,861233,987205,510226,814235,650252,775147,851196,172177,339155,023162,415207,427256,162235,048154,903183,914194,669187,604163,850178,722282,424223,512229,264283,528219,762192,114206,591200,729328,223220,809222,830326,174281,141182,715314,122259,951334,482216,864258,263258,523232,780209,789223,293221,259375,767205,616218,958149,623144,445225,678126,11613,896,90392.85%

This table can be downloaded as an Excel table below:

 

5. DADA2 Amplicon Sequence Variants (ASVs). A total of 1333747 unique merged and chimera-free ASV sequences were identified, and their corresponding read counts for each sample are available in the "ASV Read Count Table" with rows for the ASV sequences and columns for sample. This read count table can be used for microbial profile comparison among different samples and the sequences provided in the table can be used to taxonomy assignment.

 

The table can be downloaded from this link:

 
 

Sample Meta Information

Download Sample Meta Information
#SampleIDGroupGroup1Group2
F9928.S01Mother Saliva PretermMother Saliva Preterm (B+ & B-)Mother Saliva Preterm (B-)
F9928.S02Mother Saliva PretermMother Saliva Preterm (B+ & B-)Mother Saliva Preterm (B+)
F9928.S03Mother Saliva PretermMother Saliva Preterm (B+ & B-)Mother Saliva Preterm (B-)
F9928.S04Mother Saliva PretermMother Saliva Preterm (B+ & B-)Mother Saliva Preterm (B+)
F9928.S05Mother Saliva PretermMother Saliva Preterm (B+ & B-)Mother Saliva Preterm (B-)
F9928.S06Mother Saliva PretermMother Saliva Preterm (B+ & B-)Mother Saliva Preterm (B+)
F9928.S07Mother Saliva On-termMother Saliva On-term (B-)Mother Saliva On-term (B-)
F9928.S08Mother Saliva On-termMother Saliva On-term (B-)Mother Saliva On-term (B-)
F9928.S09Mother Saliva On-termMother Saliva On-term (B-)Mother Saliva On-term (B-)
F9928.S10Baby Saliva PretermBaby Saliva Preterm (B+ & B-) T0Baby Saliva Preterm (B-) T0
F9928.S11Baby Saliva PretermNABaby Saliva Preterm (B-) T1
F9928.S12Baby Saliva PretermNABaby Saliva Preterm (B-) T2
F9928.S13Baby Saliva PretermBaby Saliva Preterm (B+ & B-) T0Baby Saliva Preterm (B+) T0
F9928.S14Baby Saliva PretermNABaby Saliva Preterm (B+) T1
F9928.S15Baby Saliva PretermNABaby Saliva Preterm (B+) T2
F9928.S16Baby Saliva PretermBaby Saliva Preterm (B+ & B-) T0Baby Saliva Preterm (B-) T0
F9928.S17Baby Saliva PretermNABaby Saliva Preterm (B-) T1
F9928.S18Baby Saliva PretermNABaby Saliva Preterm (B-) T2
F9928.S19Baby Saliva PretermBaby Saliva Preterm (B+ & B-) T0Baby Saliva Preterm (B+) T0
F9928.S20Baby Saliva PretermNABaby Saliva Preterm (B+) T1
F9928.S21Baby Saliva PretermNABaby Saliva Preterm (B+) T2
F9928.S22Baby Saliva PretermBaby Saliva Preterm (B+ & B-) T0Baby Saliva Preterm (B-) T0
F9928.S23Baby Saliva PretermNABaby Saliva Preterm (B-) T1
F9928.S24Baby Saliva PretermNABaby Saliva Preterm (B-) T2
F9928.S25Baby Saliva PretermBaby Saliva Preterm (B+ & B-) T0Baby Saliva Preterm (B+) T0
F9928.S26Baby Saliva PretermNABaby Saliva Preterm (B+) T1
F9928.S27Baby Saliva PretermNABaby Saliva Preterm (B+) T2
F9928.S28Baby Saliva On-termBaby Saliva On-term T0Baby Saliva On-term (B-) T0
F9928.S29Baby Saliva On-termNABaby Saliva On-term (B-) T1
F9928.S30Baby Saliva On-termNABaby Saliva On-term (B-) T2
F9928.S31Baby Saliva On-termBaby Saliva On-term T0Baby Saliva On-term (B-) T0
F9928.S32Baby Saliva On-termNABaby Saliva On-term (B-) T1
F9928.S33Baby Saliva On-termNABaby Saliva On-term (B-) T2
F9928.S34Baby Saliva On-termBaby Saliva On-term T0Baby Saliva On-term (B-) T0
F9928.S35Baby Saliva On-termNABaby Saliva On-term (B-) T1
F9928.S36Baby Saliva On-termNABaby Saliva On-term (B-) T2
F9928.S37Baby Stool PretermBaby Stool Preterm (B+ & B-) T0Baby Stool Preterm (B-) T0
F9928.S38Baby Stool PretermNABaby Stool Preterm (B-) T1
F9928.S39Baby Stool PretermNABaby Stool Preterm (B-) T2
F9928.S40Baby Stool PretermBaby Stool Preterm (B+ & B-) T0Baby Stool Preterm (B+) T0
F9928.S41Baby Stool PretermNABaby Stool Preterm (B+) T1
F9928.S42Baby Stool PretermNABaby Stool Preterm (B+) T2
F9928.S43Baby Stool PretermBaby Stool Preterm (B+ & B-) T0Baby Stool Preterm (B-) T0
F9928.S44Baby Stool PretermNABaby Stool Preterm (B-) T1
F9928.S45Baby Stool PretermNABaby Stool Preterm (B-) T2
F9928.S46Baby Stool PretermBaby Stool Preterm (B+ & B-) T0Baby Stool Preterm (B+) T0
F9928.S47Baby Stool PretermNABaby Stool Preterm (B+) T1
F9928.S48Baby Stool PretermNABaby Stool Preterm (B+) T2
F9928.S49Baby Stool PretermBaby Stool Preterm (B+ & B-) T0Baby Stool Preterm (B-) T0
F9928.S50Baby Stool PretermNABaby Stool Preterm (B-) T1
F9928.S51Baby Stool PretermNABaby Stool Preterm (B-) T2
F9928.S52Baby Stool PretermBaby Stool Preterm (B+ & B-) T0Baby Stool Preterm (B+) T0
F9928.S53Baby Stool PretermNABaby Stool Preterm (B+) T1
F9928.S54Baby Stool PretermNABaby Stool Preterm (B+) T2
F9928.S55Baby Stool On-termBaby Stool On-term T0Baby Stool On-term (B-) T0
F9928.S56Baby Stool On-termNABaby Stool On-term (B-) T1
F9928.S57Baby Stool On-termNABaby Stool On-term (B-) T2
F9928.S58Baby Stool On-termBaby Stool On-term T0Baby Stool On-term (B-) T0
F9928.S59Baby Stool On-termNABaby Stool On-term (B-) T1
F9928.S60Baby Stool On-termNABaby Stool On-term (B-) T2
F9928.S61Baby Stool On-termBaby Stool On-term T0Baby Stool On-term (B-) T0
F9928.S62Baby Stool On-termNABaby Stool On-term (B-) T1
F9928.S63Baby Stool On-termNABaby Stool On-term (B-) T2
 
 

ASV Read Counts by Samples

#Sample IDRead Count
F9928.S63126,116
F9928.S61144,445
F9928.S19147,851
F9928.S60149,623
F9928.S27154,903
F9928.S22155,023
F9928.S07162,140
F9928.S23162,415
F9928.S31163,850
F9928.S05165,210
F9928.S02166,612
F9928.S10172,828
F9928.S21177,339
F9928.S32178,722
F9928.S46182,715
F9928.S28183,914
F9928.S30187,604
F9928.S38192,114
F9928.S29194,669
F9928.S20196,172
F9928.S12200,517
F9928.S40200,729
F9928.S06200,931
F9928.S15205,510
F9928.S58205,616
F9928.S39206,591
F9928.S24207,427
F9928.S54209,789
F9928.S50216,864
F9928.S13217,861
F9928.S59218,958
F9928.S37219,762
F9928.S42220,809
F9928.S56221,259
F9928.S43222,830
F9928.S55223,293
F9928.S34223,512
F9928.S01224,969
F9928.S62225,678
F9928.S16226,814
F9928.S35229,264
F9928.S08230,461
F9928.S53232,780
F9928.S14233,987
F9928.S26235,048
F9928.S17235,650
F9928.S04239,119
F9928.S03239,484
F9928.S18252,775
F9928.S25256,162
F9928.S51258,263
F9928.S52258,523
F9928.S48259,951
F9928.S11266,752
F9928.S09278,839
F9928.S45281,141
F9928.S33282,424
F9928.S36283,528
F9928.S47314,122
F9928.S44326,174
F9928.S41328,223
F9928.S49334,482
F9928.S57375,767
 
 
 

VII. Analysis - Read Taxonomy Assignment

Read Taxonomy Assignment - Methods

 

The species-level, open-reference 16S rRNA NGS reads taxonomy assignment pipeline

Version 20210310
 

1. Raw sequences reads in FASTA format were BLASTN-searched against a combined set of 16S rRNA reference sequences. It consists of MOMD (version 0.1), the HOMD (version 15.2 http://www.homd.org/index.php?name=seqDownload&file&type=R ), HOMD 16S rRNA RefSeq Extended Version 1.1 (EXT), GreenGene Gold (GG) (http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/gold_strains_gg16S_aligned.fasta.gz) , and the NCBI 16S rRNA reference sequence set (https://ftp.ncbi.nlm.nih.gov/blast/db/16S_ribosomal_RNA.tar.gz). These sequences were screened and combined to remove short sequences (<1000nt), chimera, duplicated and sub-sequences, as well as sequences with poor taxonomy annotation (e.g., without species information). This process resulted in 1,015 from HOMD V15.22, 495 from EXT, 3,940 from GG and 18,044 from NCBI, a total of 25,120 sequences. Altogether these sequence represent a total of 15,601 oral and non-oral microbial species.

The NCBI BLASTN version 2.7.1+ (Zhang et al, 2000) was used with the default parameters. Reads with ≥ 98% sequence identity to the matched reference and ≥ 90% alignment length (i.e., ≥ 90% of the read length that was aligned to the reference and was used to calculate the sequence percent identity) were classified based on the taxonomy of the reference sequence with highest sequence identity. If a read matched with reference sequences representing more than one species with equal percent identity and alignment length, it was subject to chimera checking with USEARCH program version v8.1.1861 (Edgar 2010). Non-chimeric reads with multi-species best hits were considered valid and were assigned with a unique species notation (e.g., spp) denoting unresolvable multiple species.

2. Unassigned reads (i.e., reads with < 98% identity or < 90% alignment length) were pooled together and reads < 200 bases were removed. The remaining reads were subject to the de novo operational taxonomy unit (OTU) calling and chimera checking using the USEARCH program version v8.1.1861 (Edgar 2010). The de novo OTU calling and chimera checking was done using 98% as the sequence identity cutoff, i.e., the species-level OTU. The output of this step produced species-level de novo clustered OTUs with 98% identity. Representative reads from each of the OTUs/species were then BLASTN-searched against the same reference sequence set again to determine the closest species for these potential novel species. These potential novel species were pooled together with the reads that were signed to specie-level in the previous step, for down-stream analyses.

Reference:
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12. PubMed PMID: 20709691.

3. Designations used in the taxonomy:

	1) Taxonomy levels are indicated by these prefixes:
	
	   k__: domain/kingdom
	   p__: phylum
	   c__: class
	   o__: order
	   f__: family
	   g__: genus  
	   s__: species
	
	   Example: 
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__faecis
		
	2) Unique level identified – known species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__hominis
	
	   The above example shows some reads match to a single species (all levels are unique)
	
	3) Non-unique level identified – known species:

	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__multispecies_spp123_3
	   
	   The above example “s__multispecies_spp123_3” indicates certain reads equally match to 3 species of the 
	   genus Roseburia; the “spp123” is a temporally assigned species ID.
	
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__multigenus;s__multispecies_spp234_5
	   
	   The above example indicates certain reads match equally to 5 different species, which belong to multiple genera.; 
	   the “spp234” is a temporally assigned species ID.
	
	4) Unique level identified – unknown species, potential novel species:
	   
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ hominis_nov_97%
	   
	   The above example indicates that some reads have no match to any of the reference sequences with 
	   sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. However this groups 
	   of reads (actually the representative read from a de novo  OTU) has 96% percent identity to 
	   Roseburia hominis, thus this is a potential novel species, closest to Roseburia hominis. 
	   (But they are not the same species).
	
	5) Multiple level identified – unknown species, potential novel species:
	   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__ multispecies_sppn123_3_nov_96%
	
	   The above example indicates that some reads have no match to any of the reference sequences 
	   with sequence identity ≥ 98% and percent coverage (alignment length)  ≥ 98% as well. 
	   However this groups of reads (actually the representative read from a de novo  OTU) 
	   has 96% percent identity equally to 3 species in Roseburia. Thus this is no single 
	   closest species, instead this group of reads match equally to multiple species at 96%. 
	   Since they have passed chimera check so they represent a novel species. “sppn123” is a 
	   temporary ID for this potential novel species. 

 
4. The taxonomy assignment algorithm is illustrated in this flow char below:
 
 
 
 

Read Taxonomy Assignment - Result Summary *

CodeCategoryMPC=0% (>=1 read)MPC=0.01%(>=1290 reads)
ATotal reads13,896,90313,896,903
BTotal assigned reads12,906,34212,906,342
CAssigned reads in species with read count < MPC0163,179
DAssigned reads in samples with read count < 50000
ETotal samples6363
FSamples with reads >= 5006363
GSamples with reads < 50000
HTotal assigned reads used for analysis (B-C-D)12,906,34212,743,163
IReads assigned to single species7,046,6616,973,106
JReads assigned to multiple species5,407,9535,377,979
KReads assigned to novel species451,728392,078
LTotal number of species1,626226
MNumber of single species517153
NNumber of multi-species18247
ONumber of novel species92726
PTotal unassigned reads990,561990,561
QChimeric reads59,94959,949
RReads without BLASTN hits945945
SOthers: short, low quality, singletons, etc.929,667929,667
A=B+P=C+D+H+Q+R+S
E=F+G
B=C+D+H
H=I+J+K
L=M+N+O
P=Q+R+S
* MPC = Minimal percent (of all assigned reads) read count per species, species with read count < MPC were removed.
* Samples with reads < 500 were removed from downstream analyses.
* The assignment result from MPC=0.1% was used in the downstream analyses.
 
 
 

Read Taxonomy Assignment - ASV Species-Level Read Counts Table

This table shows the read counts for each sample (columns) and each species identified based on the ASV sequences. The downstream analyses were based on this table.
SPIDTaxonomyF9928.S01F9928.S02F9928.S03F9928.S04F9928.S05F9928.S06F9928.S07F9928.S08F9928.S09F9928.S10F9928.S11F9928.S12F9928.S13F9928.S14F9928.S15F9928.S16F9928.S17F9928.S18F9928.S19F9928.S20F9928.S21F9928.S22F9928.S23F9928.S24F9928.S25F9928.S26F9928.S27F9928.S28F9928.S29F9928.S30F9928.S31F9928.S32F9928.S33F9928.S34F9928.S35F9928.S36F9928.S37F9928.S38F9928.S39F9928.S40F9928.S41F9928.S42F9928.S43F9928.S44F9928.S45F9928.S46F9928.S47F9928.S48F9928.S49F9928.S50F9928.S51F9928.S52F9928.S53F9928.S54F9928.S55F9928.S56F9928.S57F9928.S58F9928.S59F9928.S60F9928.S61F9928.S62F9928.S63
SP1Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;tuberculostearicum000000000154704900081000001313000000000002014000567003570008021852900618337078800004900
SP100Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;sp. HMT1808911220107166023832104501448885417006370000000015183000000007722817000000391630000000000000000011000000
SP101Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;anginosus000093010100000000000000000000000000000290000000000000000018700027561249731890309756
SP102Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Mediterraneibacter;[Ruminococcus] lactaris000000000000000000000000000000000000000050000046220000000000000000
SP103Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;scardovii0000000000000000000000000000000000948900000000244200808000000019000003143514773082
SP104Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;longum00014000000000040000000000050424200000000013076410507001000441280591703732536547280177127421533496686050377265654792122388
SP105Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;bivia000000000000000000000000000000000000006002000107485021563838893970000000460128726100602
SP106Bacteria;Firmicutes;Tissierellia;Tissierellales;Peptoniphilaceae;Finegoldia;magna0000190000000000000000000000000000000107274370000082506071784129022885671852402638137726504735603684891002939
SP108Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;haemolysans870338497329942376272868604741003878333723143305577352803887257114900522501153421783051475530272932048682003613852142345442200019680000002486001300000009701600
SP109Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Coriobacteriaceae;Collinsella;aerofaciens0000000000000000000000000000000000000014338230000072000173585109875400027343301612386900418922591845554991306
SP110Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Peptoniphilus;grossensis00000000000000000000000000000000000070900000002765391970058930148695177340003416000881
SP111Bacteria;Firmicutes;Tissierellia;Tissierellales;Peptoniphilaceae;Anaerococcus;octavius000000000000002000000000000000000000000000022780235040590015310000000000
SP118Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;atypica00019961251033025032710028710060038308001206006960126132950300155213000001291001564920000287108590037818190000266116808000000
SP119Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Solobacterium;moorei176264081820314222106216344000000000000000000000000000000000000008934000000000000000
SP120Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Yersiniaceae;Serratia;nematodiphila000000000000000000000000000000000000000000895200000000000000000000
SP121Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;fragilis00000000000000000000000000000000000000118600000000000000030300772144531026000
SP122Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;chromiireducens00000000000000000000000000000000000000254000000056520000000002960000050
SP123Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Bacteroidaceae;Phocaeicola;vulgatus000000000000000000000000000000000000003000000717430876913748650000015500325366164363230302
SP124Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;saccharolyticus0000000000000000000000000000000000022000000000000433700000000000000
SP125Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;paraputrificum0000000000000000000000000000000000000537171048291006800116004358000833781000000
SP126Bacteria;Firmicutes;Tissierellia;Tissierellales;Peptoniphilaceae;Anaerococcus;vaginalis00000000000000000000000000000000000000700000000000002496254600000000246
SP127Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;tertium0000000000000000000000000000000000000000456200108000134280488175870002077000000
SP130Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;sanguinis574232102590520951384317322617130000000000008300000000000000000000000000000000000000000
SP131Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;sp. HMT172045012527104265837044609175100000000000011400000000000000000000000000000000000000000
SP134Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;aeria38610701245015024682140000000000000500000000000000000000000000000000000000000
SP135Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;adiacens672092719811265815715160464222531468893018400000000443412980000729577064900080000001380000000073800000000000000
SP136Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;parainfluenzae1437925891669127527673221184671000984000000003759000830000000153422000000000000000000001330012247400
SP137Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcus;anaerobius0000000000000000000000000000000000000017000003839100310000000000006069
SP138Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Peptoniphilus;lacrimalis000000000000000000000000000000000000000000000000000009994000000000
SP139Bacteria;Firmicutes;Tissierellia;Tissierellales;Peptoniphilaceae;Anaerococcus;lactolyticus0000000000000000000000000000000000000000000000000000206015895000000000
SP140Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Paratractidigestivibacter;faecalis0000000000000000000000000000000000000000000000000000003800167571282000
SP144Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Stutzerimonas;[Pseudomonas] urumqiensis0000000000001890004110034210000000000052301370277451204500052634188510000027447004352000
SP145Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;faecis00000000000000000000000000000000000000000000000000000000041676424442140
SP146Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Mediterraneibacter;[Ruminococcus] gnavus0000000000000000000000000000000000000047010000000592018030000004331363463345874732926000
SP147Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Propionibacteriaceae;Cutibacterium;acnes0304226000004311765000020501192000000057523107001800240115000000011535000006612503240000
SP149Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;lugdunensis00000000000002162100000000000000000000360000001100000000000000080001570
SP150Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;amycolatum000000000000000000000189200000000000000000000000001592561900050000055820243900
SP152Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Yersiniaceae;Serratia;surfactantfaciens0000000000000001400000000000000000000000000999400000000000000000000
SP153Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;sputigena12322336126166210670000000000000000000000000000000000000000000000060000000
SP154Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;corporis000000000000000000000000000000000000000000000000008002756000000000
SP155Bacteria;Proteobacteria;Gammaproteobacteria;Moraxellales;Moraxellaceae;Acinetobacter;baumannii0000000000000000000000000000000000000001071002160017400768600400000000000
SP156Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;dispar0060107381380628719962453007477001090000051874730284200004584100039222109006301620627240679648004145419725700014915593000011062
SP157Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;morbillorum1712302233130195286242000000000000000000000000000000000000003438000000000000000
SP159Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;pasteri30602336129969503628021163500000000400043000000000000000000000000000000004800000000
SP160Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Citrobacter;koseri000000000000000000000000000000000000001001200000000047000169000000000
SP162Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus;gasseri0000000000000500061306931012150600081336300000000184000009801644167001200037160000000
SP173Bacteria;Firmicutes;Clostridia;Eubacteriales;Oscillospiraceae;Faecalibacterium;prausnitzii000000000000000000000000000000000000000000000000296500000000000000
SP176Eukaryota;Streptophyta;Pinopsida;Pinales;Pinaceae;Pinus;sylvestris00000000000000000000095000000000000000001561800000000000000000000000
SP179Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;timonensis0000000000000000000000000000000000000000000000011003430002687000050000
SP182Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;bifidum00000000000000000000000000000000000000617708614700520005340770008841168200170010384
SP183Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;dentocariosa1315269304410364723323481230005300000000101800000000000000000000000000152000000000050000
SP184Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Bergeyella;sp. HMT93100000700600000000000014470174000120000125054343700660000000000000000000000000000
SP186Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Tannerellaceae;Parabacteroides;distasonis00000000000000000000000000000000000000000000072100291000000370013130392309800
SP187Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Erwiniaceae;Pantoea;conspicua00000000000000000000000000000000000000011380000000066800000000000000
SP189Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;oris2040085694153985140930980001490000000000000000000000030034800700000363000000000000000
SP192Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;melaninogenica255203714681116714931441479111001002500200000000850010600020200200000000000076302000000000000
SP193Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;thetaiotaomicron0000000000000000000000000000000000000000000008000000000142001592259828243900
SP194Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Peptoniphilus;coxii000012000000000000000064000000000000000000000000000000367115721050000000
SP195Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;urogenitalis000000000000000000000000000000000000000041000000003271297900000030023410310
SP196Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;odontolyticus197071047270336984000000000000000000000000000000000000000000000000000000
SP197Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Varibaculum;anthropi000000000000000000000000000000000000000000000000010940002426000000000
SP198Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Parvimonas;micra765186034326105081041235000000000000000000000000000000000000000000000000000000
SP199Bacteria;Bacteroidota;Bacteroidia;Bacteroidales;Bacteroidaceae;Phocaeicola;dorei000000000000000000000000000000000000000000000506501019300000000000030944
SP2Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;parvula00005700000000000000000000000000000000220000002180009207570000000000000
SP203Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sanguinis029630502237301708790000000000002100000000000000000000000000042500000000000000
SP204Bacteria;Proteobacteria;Gammaproteobacteria;Xanthomonadales;Xanthomonadaceae;Stenotrophomonas;maltophilia0000000000001600000000042570010000000013000000142100000021411837000000000024000
SP205Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Varibaculum;cambriense0000000000000000000000000000000000000000000050420000105400000000000019
SP206Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;sinus013524850662921253527121403000000000000000000000000000000000000000000000000000000
SP211Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;butyricum00000000000000000000000000000000000000000000005975750012641000000000000
SP212Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcus;stomatis7541038189244517623136858441527860000000000005380000000000000000000000000068700000000000000
SP217Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;elegans00040814000809265500062000067600123255200078023000063680000000000700000000000000000000
SP219Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-3];bacterium HMT351392001342174021259113646000000000000000000000000000000000000000000000000000000
SP22Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT0746291122124717178042159360131319721925406011858639813162460994181110297619403048801114235116480616745663006810037900000000000010704732800000000000
SP220Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Peptoniphilus;tyrrelliae0000000000000000000000000000000000000000000000114012100640790304000000000
SP221Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Peptoniphilus;duerdenii00000000000000000000000000000000000000000000000000009438357000080000
SP222Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;sp. HMT169857305007901622025851426000000000000000000000000000000000000000000000000000000
SP226Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;periodonticum001228214051300020400000000000045900000000000000000000000000000000000000000
SP227Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;perflava02305289290678090109900067000000002710038400000000700000000000000215500000000000000
SP228Bacteria;Absconditabacteria_(SR1);Absconditabacteria_(SR1)_[C-1];Absconditabacteria_(SR1)_[O-1];Absconditabacteria_(SR1)_[F-1];Absconditabacteria_(SR1)_[G-1];bacterium HMT87501305760727027119000000000000000000000000000000000000000000000000000000
SP229Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT352809698035967575461013842689000000000000000000000000000000000000000000000000000000
SP234Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;simulans000000000000000000000000000000000000000000000000178700000000000000
SP235Bacteria;Firmicutes;Tissierellia;Tissierellales;Peptoniphilaceae;Anaerococcus;obesiensis0000000000000000000000000000000000000000000000000000982918000000000
SP238Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;flavescens17020862770315450329000000003000237000000000000000008302000000000000000000000
SP239Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-6];[Eubacterium]_nodatum01240958960270251000000000000000000000000000000000000000000000000000000
SP240Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Limosilactobacillus;mucosae000000000000000000000000000000000000000000002930412742000000000000000
SP243Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Yersiniaceae;Serratia;marcescens000000000000000000000000000000000000000000340800000000000000000000
SP244Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;massiliensis0480350000137000000000000000000000000000000000000000253500000000000000
SP245Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Klebsiella;variicola00000000000000000000000000000000000000000000437021000115303500030000000
SP250Bacteria;Actinobacteria;Coriobacteriia;Eggerthellales;Eggerthellaceae;Eggerthella;lenta00000000000000000000000000000000000000000000000180000003700339518445000
SP252Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;Erysipelatoclostridium;[Clostridium] innocuum0000000000000000000000000000000000000030480925300000179000000001704000000
SP257Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Gardnerella;vaginalis000000000000000000000000000000000000000000000000000000000016331638000
SP265Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;histicola00012112390027200000800000000000005000001500000000000000000000000000000
SP266Bacteria;Firmicutes;Tissierellia;Tissierellales;Peptoniphilaceae;Anaerococcus;sp. HMT29400000000204000000000000000000000200000001000000015800000009900300000
SP284Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;kroppenstedtii000000000000107390000012026200000000000000110008000000091746006407300000000
SP287Bacteria;Bacteroidota;Cytophagia;Cytophagales;Hymenobacteraceae;Hymenobacter;rigui000000000000000000000000000000000000000154600000000000000000000000
SP288Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;dentium000098070000000000000000000000000000000001500000000000000146900000000
SP294Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-1];[Eubacterium]_sulci4111606492870101138596000000000000000000000000000000000000000000000000000000
SP295Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Stomatobaculum;sp. HMT0971170634112374151486929592000000000000000000000000000000000000000000000000050000
SP298Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;pilbarense00000000000088000007001065000000000000010001000000000042100000000000000
SP305Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-6];bacterium HMT87004608808016923200000000000000002700000000503303000000000000515000000000000150
SP307Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Dermabacteraceae;Dermabacter;hominis0000000000000000000000000000000000000000000011430225115000000008650009500
SP309Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae_[XI];Peptostreptococcaceae_[XI][G-9];[Eubacterium]_brachy1231220184310649621341023000000000000000000000000000000000900000000000000000000
SP312Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Capnocytophaga;leadbetteri01101427216550127000000000000000000000000000000000000000000000000140000000
SP325Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;israelii000000000000000000000000000000000000000000000000131100000000000000
SP327Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;ihuae0000000000000000000000000000000000000000000000000000828275840000018100
SP329Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;denticariosi0000000000000000024400000000000000000000000000415000071200000000000058
SP341Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;caccae00000000000000000000000000000000000000000000010485351000000000000701039
SP342Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT2159037141139804107122000000000000000000000000000000000000000000000000000000
SP344Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Faecalimonas;umbilicata000000000000000000000000000000000000000000000000000000001391000000
SP353Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Oribacterium;parvum42600748162107084445000000000000000000000000000000000000000000000000000000
SP354Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;endodontalis27418012723529850879000000000000000000000000000000000000000000000000000000
SP357Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Winkia;neuii000000000000000000000000000000000000000000000001102000000000000293080
SP359Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;naeslundii1300012603542730000000000000000000000000000000000000000041100000000000000
SP365Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminococcaceae_[G-1];bacterium HMT0758390320348224212437000000000000000000000000000400000000000000000000000000
SP367Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Propionibacteriaceae;Cutibacterium;avidum0000000000706000000000000000000000000001563602400022002500004480000000000
SP370Bacteria;Fusobacteria;Fusobacteriia;Fusobacteriales;Leptotrichiaceae;Leptotrichia;sp. HMT3920001946247000000000000000000000000000000000120600000020000000000000000
SP400Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;stercoris0000000000000000000000000000000000000001170000016786032700000000000078043
SP41Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;rogosae5977100501901569072430007316000000055500000000000000000000000000000000000000000
SP42Bacteria;Firmicutes;Tissierellia;Tissierellales;Peptoniphilaceae;Anaerococcus;hydrogenalis0000000000000000000000000000000000000003390000003030497200000001200000000
SP43Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Anaerostipes;caccae00000000000000000000000000000000000000262000007500000000006333403000000
SP430Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Corynebacteriaceae;Corynebacterium;durum19100273233513411511190000000000007400000000000000000000000000000000000000000
SP44Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;lingnae_[Not_Validly_Published]922992964029201377445152600108800000447003095111041200661700287200015000023000000000113805090037000000000
SP45Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Morganellaceae;Proteus;mirabilis000000000000000000000000000000000000000000000004000000012055447001910002
SP451Bacteria;Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminococcaceae_[G-2];bacterium HMT0859187079375200442110253000000000000000000000000000000000000000000000000000000
SP458Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfovibrionaceae;Bilophila;wadsworthia00000000000000000000000000000000000000000000015027100006110000000401010
SP49Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Klebsiella;pneumoniae000000000000000000000000000000000000000000060913090000027300130000000000
SP51Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;mucilaginosa19218460495905219517355093082392573419924329011820327372530707364091440275071274113127032541530527887164413662437567843816738171446233708457430002016035088135132500014513673021528270
SP52Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Enterobacter;bugandensis000000000000000000000000000000000000000594900011278700005311508600000000540000
SP53Bacteria;Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus;faecalis0000000000698203900062400000000000000000001938418148617923674582177025787250537940482131941440742119956654377151185211343526388326291491587180437550
SP54Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;nucleatum0001980137004900004800000000439000000000000000000000032553000000011500000033000171
SP55Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;parasanguinis_clade_41175031528086321542916671379535518258200058089800008767249114940301691284383960724162228700412012000000109601470000107380000281207656000434000
SP56Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;capitis00000000000025837000000000000000001400000000066000000000002493010000000000
SP58Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;perfringens0000000000000000000000000000200000000129091980943441956202091538607230358059048014415116303124700200003
SP63Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;hominis000009000060159824000103013668834816054020014644657269000392556701025100002923550000007301119000000013000000
SP64Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;lactarius014020684201667073570201970275170000522403491300084309115800000000000578034617000077024001393380851960000000940000
SP65Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;peroris1540095820202693178000000000001185000000000000000000000000000300000000000000
SP66Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Megamonas;funiformis000000000000000000000000000000000000002089000000000000000000000000
SP67Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Enterobacter;mori000000000005000000000000000000000000000015000004300001443041025964980000000
SP68Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;sp. HMT05674516091109601975362800024305611007450655392560628017246944172614680919901300000000000500000000000300110
SP75Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;haemolyticus00000000000018635402254660000035251670403516000000001897001186340080800521210054066410500000000000931060
SP79Bacteria;Firmicutes;Bacilli;Lactobacillales;Aerococcaceae;Abiotrophia;defectiva21001888641319200404141000000000000192300000000000000000000000000000000000000000
SP80Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;sp. HMT78000059000856020232315130000051760000235600000014374261308721280002810000000027200000000000000
SP81Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Blautia;wexlerae000000000000000000000000000000000000001998301530006040351893740000078500727000000
SP82Bacteria;Proteobacteria;Gammaproteobacteria;Xanthomonadales;Xanthomonadaceae;Stenotrophomonas;geniculata0000002001105123729130100012014302000060001500000199411313171430000000396041845001081656908402000
SP87Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Lautropia;mirabilis2297245518141535800360000204000000000000000000000003000000000000000000110000500
SP88Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Raoultella;planticola00000000000000000000000000000000000000000000002705024000000000001600
SP89Bacteria;Actinobacteria;Actinomycetia;Corynebacteriales;Lawsonellaceae;Lawsonella;clevelandensis0000000000003000000200514000000000000003101800050184700000150119822733361000120462623411061
SP90Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;breve0000000000000000000000000000000000006406635800000000700000025693045261002645947
SP95Bacteria;Actinobacteria;Actinomycetia;Actinomycetales;Actinomycetaceae;Actinomyces;graevenitzii01206619833296230156742900110200000000000002367830002142022000004000000000000000000000000
SP96Bacteria;Firmicutes;Clostridia;Eubacteriales;Peptostreptococcaceae;Clostridioides;difficile0000000000000000000000000000000000000020100000211000004317000011355539000081963
SP97Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Klebsiella;oxytoca0000000000800000000000000000000000000859346720109000000169165523030046101526100000000
SP98Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;odontolytica3366142376924863706213583321515000117122000000770000298000000000000019540000000025500001500140000000
SP99Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;Dialister;propionicifaciens000000000000000000000000000000000000000000000002800362800131232000000000
SPN10Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;tarantellae_nov_96.599%000000000000000000000000000000000000000001288000000003700006420000000
SPN102Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Peptoniphilaceae_[G-3];bacterium HMT929 nov_88.739%000000000000000000000440000000000000000004000000011700026639820020200000
SPN133Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Peptoniphilus;sp. HMT375 nov_87.810%0000000000000000000000000000000000000000000000000000483423000000000
SPN178Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;haemolysans_nov_97.425%95001290831361621960085006301111460677200179029872201031186202106856971009204000000000007000000000000000
SPN18Bacteria;Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus;faecalis_nov_96.788%0000000000000000000000000000000000000006251007000010825215008004767703144900
SPN204Bacteria;Firmicutes;Bacilli;Bacillales;Gemellaceae;Gemella;haemolysans_nov_94.030%712704391163114585596410031109628503253790206233640304012072403033225917217942415260735486420000000000348000000000000000
SPN233Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Peptoniphilus;coxii_nov_97.955%00000000000000000000000000000000000000000000000000004674106000050000
SPN27Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;atypica_nov_96.137%000700801000510000051200210025001700327590000057000000000000009400007233000000
SPN301Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;saccharobutylicum_nov_96.110%0000000000000000000000000000000000000000048270000000092000059270000000
SPN329Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;chromiireducens_nov_97.959%000000000000000000000000000000000000000000000037790001000000225000000
SPN36Bacteria;Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus;faecalis_nov_89.507%000000000000000000000000000000000000002123292000000801171450280088468027070021
SPN45Bacteria;Firmicutes;Clostridia;Eubacteriales;Lachnospiraceae;Mediterraneibacter;[Ruminococcus] gnavus_nov_92.601%000000000000000000000000000000000000000000000000000000301012337429000
SPN496Bacteria;Firmicutes;Negativicutes;Selenomonadales;Selenomonadaceae;Megamonas;funiformis_nov_97.849%000000000000000000000000000000000000008112000000000003000000000000
SPN525Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;saccharobutylicum_nov_96.606%00000000000000000000000000000000000000000188700000000000008090000000
SPN56Bacteria;Saccharibacteria_(TM7);Saccharibacteria_(TM7)_[C-1];Saccharibacteria_(TM7)_[O-1];Saccharibacteria_(TM7)_[F-1];Saccharibacteria_(TM7)_[G-1];bacterium HMT346 nov_97.964%000053000250000000000003040000000000000000094100000000000000000000000
SPN65Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;tarantellae_nov_97.052%0000000000000000000000000000000000000000098200000000100003150000000
SPN86Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;saccharobutylicum_nov_97.052%0000000000000000000000000000000000000036703212337600950000026620045082605000202000
SPN9Bacteria;Actinobacteria;Actinomycetia;Micrococcales;Micrococcaceae;Rothia;mucilaginosa_nov_97.991%000958640400332523290000191522519073913235608908003000510000520000123000500022111480313000000000000
SPP1Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;multispecies_spp1_200014751030000000000000000000000000000000000000000000000000000000000
SPP10Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp10_30501489044910210000002006047780450300846177989323034500000000000000029000002600000000
SPP121Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp121_3433030433781588199334361648197410390000000000243099400008272164273469000000000000000000300000000000000
SPP127Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Klebsiella;multispecies_spp127_20000000000000000014000000000000000000000000075113970003850389000000000000
SPP141Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;multispecies_spp141_20006000000000130000000000000000000000121620010300000000890018800000000000
SPP142Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;multispecies_spp142_31120000000612106801619241475011890036070306209720401030014140340904700085339437162581972214307901140001608904611702200191874050941275308970
SPP148Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;Enterobacter;multispecies_spp148_400000000000000005400000000000000000000008390000191867041828075632500817501430134707300660000
SPP149Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp149_2733532313417841732159555262357166700105219130127800365026453275130104810551265526641141981728064284374461740008904600001301850000031700613000
SPP155Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp155_24921101427712947491934601028841890002360145526641520006347052863742121204746017129034256783359514837075499613033371000450300002440430000011300050330
SPP16Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp16_186077162338124692112862770236317650371071020251111002762031814129669051260713344416198408257864710934436020613870000000000157015000000000086003510
SPP161Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp161_205952783034320335321334050070951787579013300172690157462088291301822900112794919203853393124894026071207093073006300570406000035461993045048104731512861372835852051274312288612
SPP165Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Enterobacteriaceae;multigenus;multispecies_spp165_4000000000000025120003357001431197430000241700000000044001109191626335720010151024358432963528787043608129123651364138444082398781050249782163194803208360
SPP17Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp17_17110108758241641509511741320054235644836912486717194320921690478357182864196770276126398299049426774624094801851279081204021323142757489227418510906115150522145837977147842255979171003265019500072131521485968200020785920549843611044924
SPP172Bacteria;Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus;multispecies_spp172_20000000000000000000000000000000000000001860000000596600000003286000000
SPP18Bacteria;Proteobacteria;Alphaproteobacteria;multiorder;multifamily;multigenus;multispecies_spp18_2000000000000000000000000000000000000000312300000000000000000000000
SPP180Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;multispecies_spp180_40000470000000005900033490000000000011100000000000000006300000001610033006753320
SPP182Bacteria;Firmicutes;Bacilli;Bacillales;Bacillaceae;Bacillus;multispecies_spp182_400000000000028800000040417000000000000032403055281306000006478000007900005000
SPP19Bacteria;Firmicutes;Tissierellia;Tissierellales;Peptoniphilaceae;Anaerococcus;multispecies_spp19_2000000000000000000000000000000000110000400000000000000000006094778000
SPP21Bacteria;Firmicutes;Tissierellia;Tissierellales;Peptoniphilaceae;Anaerococcus;multispecies_spp21_20000000000000000000000000000000000000000000000000000347605190000000900
SPP25Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;multispecies_spp25_20000000000000000000000000000000007000000650000000140300037075932003567046075
SPP28Bacteria;Firmicutes;Clostridia;Clostridiales;Peptoniphilaceae;Peptoniphilus;multispecies_spp28_3000000000000000000000000000000000000000000003102050750032096991277090000000
SPP33Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp33_25110762790195316821805295000130000000021030000074140000000000000000000005500000000000000
SPP37Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp37_2000380000649000000000000000000000000000000000000000132100000000000000
SPP39Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp39_3271701632604148513514814618711690003102430000103851916500398832933501037195558009780000000000000002247007500000000000
SPP41Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;multifamily;multigenus;multispecies_spp41_27972801064471350175123021272267300321800000250000099200281253675153140180020038000400000002660000202000000
SPP42Bacteria;Firmicutes;Negativicutes;Veillonellales;Veillonellaceae;multigenus;multispecies_spp42_20000000000000000000000000000000000000000000000000000000000006880621
SPP44Bacteria;Actinobacteria;multiclass;multiorder;multifamily;Fannyhessea;vaginae00000000000000000000016000000000000000000000000000000000000074071936000
SPP46Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas;multispecies_spp46_2000000000000000000000000000000000000000258200000000000000000000000
SPP47Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Clostridium;multispecies_spp47_2000000000000000000000000000000000000000000000000000000046720000000
SPP50Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Lactococcus;multispecies_spp50_20000000000000000000000000000000000000001581000000004500000080000000
SPP52Bacteria;Fusobacteria;Fusobacteria;Fusobacteriales;Fusobacteriaceae;Fusobacterium;multispecies_spp52_3000213000000000000000000000000000000000002550004216000168900340000000000
SPP53Bacteria;Firmicutes;Clostridia;Eubacteriales;Clostridiaceae;Hungatella;multispecies_spp53_200000000001200000000000000000000000000716131304300000000700002400000000
SPP54Bacteria;Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium;multispecies_spp54_2000000000000000000000000000000000000001538900000000112460000000003100000
SPP55Bacteria;Actinobacteria;Coriobacteriia;Coriobacteriales;Atopobiaceae;Olsenella;multispecies_spp55_20000000000000000000000000000000000000000000000000000014602000000000
SPP56Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp56_492524341451017221712195375060167200000202023713011700228736303420000000000000000000023000000000000
SPP61Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus;multispecies_spp61_200000000000080000000012050000000000000000021600000000000000010100000000
SPP63Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Bradyrhizobiaceae;multigenus;multispecies_spp63_180000000000000000000000165310000000000000000000000000000000000000000
SPP64Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;multispecies_spp64_20006100002140000000000000000180000000482200000000000000000000000000000
SPP68Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria;multispecies_spp68_4000077000000015400000000183300000000006000000000000000000000500082000
SPP76Bacteria;Proteobacteria;multiclass;multiorder;multifamily;multigenus;multispecies_spp76_204000000000039700000000000004000000000005794300000002089400008860000000
SPP79Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;multispecies_spp79_20004642000334000000000000000072400000400002000670000000046100000000050901500
SPP8Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_spp8_2930000055292000005000033600002554026420027000000000000000000000000000000
SPP83Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Lactobacillus;multispecies_spp83_2000000000000221000000001226003000000000000000500000000000000110000000
SPP85Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;multispecies_spp85_229000000028007001590000000000000022000000000002560000000000000000000000
SPP87Bacteria;Firmicutes;Clostridia;Negativicutes;Veillonellaceae;Veillonella;multispecies_spp87_30012267609160056000000000000106600000000000000000000000000000000000000000
SPP90Bacteria;Firmicutes;Clostridia;Clostridiales;Lachnospiraceae_[XIV];Lachnoanaerobaculum;multispecies_spp90_2166415181320449396114121399000000000000000022000000000000000000000314000000000000000
SPP98Bacteria;Firmicutes;Clostridia;Clostridiales;multifamily;multigenus;multispecies_spp98_30103000970262000000000000013400000000000000000000000000111700000000000000
SPPN104Bacteria;Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus;multispecies_sppn104_2_nov_96.360%9358357922634961136166469904067000002834006431130004407540970204000000041000000088130053000000000000
SPPN109Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Actinomycetaceae;Schaalia;multispecies_sppn109_2_nov_87.419%163670473211110113758427006900000190063800120201080012116020000001000000000000000000000000
SPPN13Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_sppn13_18_nov_97.859%0150014094200027005160007490362381110205002482871112020821980612920000000000160300000000000020
SPPN143Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_sppn143_2_nov_97.849%5140227301198517003350464400986056313684060901567417251430326421324331300000000007102000002400000000
SPPN151Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_sppn151_17_nov_92.505%0000000000000159000000494000020300000017701126254000000000000000000000000000
SPPN171Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_sppn171_17_nov_94.658%7437146938444474421643883200250000000063662000005530610000000003000000001800000000000000
SPPN184Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_sppn184_17_nov_97.634%511373807103190041026260303708920490363777410215125454119337258220000000000043900000000000000
SPPN2Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;multispecies_sppn2_17_nov_94.658%00051253002890000000013300149390001750000012650000000000000000000000000000000
 
 
Download OTU Tables at Different Taxonomy Levels
PhylumCount*: Relative**: CLR***:
ClassCount*: Relative**: CLR***:
OrderCount*: Relative**: CLR***:
FamilyCount*: Relative**: CLR***:
GenusCount*: Relative**: CLR***:
SpeciesCount*: Relative**: CLR***:
* Read count
** Relative abundance (count/total sample count)
*** Centered log ratio transformed abundance
;
 
The species listed in the table has full taxonomy and a dynamically assigned species ID specific to this report. When some reads match with the reference sequences of more than one species equally (i.e., same percent identiy and alignmnet coverage), they can't be assigned to a particular species. Instead, they are assigned to multiple species with the species notaton "s__multispecies_spp2_2". In this notation, spp2 is the dynamic ID assigned to these reads that hit multiple sequences and the "_2" at the end of the notation means there are two species in the spp2.

You can look up which species are included in the multi-species assignment, in this table below:
 
 
 
 
Another type of notation is "s__multispecies_sppn2_2", in which the "n" in the sppn2 means it's a potential novel species because all the reads in this species have < 98% idenity to any of the reference sequences. They were grouped together based on de novo OTU clustering at 98% identity cutoff. And then a representative sequence was chosed to BLASTN search against the reference database to find the closest match (but will still be < 98%). This representative sequence also matched equally to more than one species, hence the "spp" was given in the label.
 
 

Taxonomy Bar Plots for All Samples

 
 

Taxonomy Bar Plots for Individual Comparison Groups

 
 
Comparison No.Comparison NameFamiliesGeneraSpecies
Comparison 1Mother Saliva Preterm (B+ & B-) vs Mother Saliva On-term (B-)PDFSVGPDFSVGPDFSVG
Comparison 2Baby Saliva Preterm (B+ & B-) T0 vs Baby Saliva On-term T0PDFSVGPDFSVGPDFSVG
Comparison 3Baby Stool Preterm (B+ & B-) T0 vs Baby Stool On-term T0PDFSVGPDFSVGPDFSVG
Comparison 4Mother Saliva Preterm (B-) vs Mother Saliva On-term (B-)PDFSVGPDFSVGPDFSVG
Comparison 5Baby Saliva Preterm (B-) T0 vs Baby Saliva On-term (B-) T0PDFSVGPDFSVGPDFSVG
Comparison 6Baby Stool Preterm (B-) T0 vs Baby Stool On-term (B-) T0PDFSVGPDFSVGPDFSVG
Comparison 7Mother Saliva Preterm (B-) vs Mother Saliva Preterm (B+)PDFSVGPDFSVGPDFSVG
Comparison 8Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0PDFSVGPDFSVGPDFSVG
Comparison 9Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0PDFSVGPDFSVGPDFSVG
Comparison 10Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0 vs Baby Saliva On-term (B-) T0PDFSVGPDFSVGPDFSVG
Comparison 11Baby Saliva Preterm (B-) T1 vs Baby Saliva Preterm (B+) T1 vs Baby Saliva On-term (B-) T1PDFSVGPDFSVGPDFSVG
Comparison 12Baby Saliva Preterm (B-) T2 vs Baby Saliva Preterm (B+) T2 vs Baby Saliva On-term (B-) T2PDFSVGPDFSVGPDFSVG
Comparison 13Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0 vs Baby Stool On-term (B-) T0PDFSVGPDFSVGPDFSVG
Comparison 14Baby Stool Preterm (B-) T1 vs Baby Stool Preterm (B+) T1 vs Baby Stool On-term (B-) T1PDFSVGPDFSVGPDFSVG
Comparison 15Baby Stool Preterm (B-) T2 vs Baby Stool Preterm (B+) T2 vs Baby Stool On-term (B-) T2PDFSVGPDFSVGPDFSVG
 
 

VIII. Analysis - Alpha Diversity

 

In ecology, alpha diversity (α-diversity) is the mean species diversity in sites or habitats at a local scale. The term was introduced by R. H. Whittaker[1][2] together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape (gamma diversity) is determined by two different things, the mean species diversity in sites or habitats at a more local scale (alpha diversity) and the differentiation among those habitats (beta diversity).


References:
Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338. doi:10.2307/1943563
Whittaker, R. H. (1972). Evolution and Measurement of Species Diversity. Taxon, 21, 213-251. doi:10.2307/1218190

 

Alpha Diversity Analysis by Rarefaction

Diversity measures are affected by the sampling depth. Rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples. Rarefaction curves generally grow rapidly at first, as the most common species are found, but the curves plateau as only the rarest species remain to be sampled.


References:
Willis AD. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol. 2019 Oct 23;10:2407. doi: 10.3389/fmicb.2019.02407. PMID: 31708888; PMCID: PMC6819366.

 
 
 

Boxplot of Alpha-diversity Indices

The two main factors taken into account when measuring diversity are richness and evenness. Richness is a measure of the number of different kinds of organisms present in a particular area. Evenness compares the similarity of the population size of each of the species present. There are many different ways to measure the richness and evenness. These measurements are called "estimators" or "indices". Below is a diversity of 3 commonly used indices showing the values for all the samples (dots) and in groups (boxes).

 
Alpha Diversity Box Plots for All Groups
 
 
 
 
 
 
 
Alpha Diversity Box Plots for Individual Comparisons
 
Comparison 1Mother Saliva Preterm (B+ & B-) vs Mother Saliva On-term (B-)View in PDFView in SVG
Comparison 2Baby Saliva Preterm (B+ & B-) T0 vs Baby Saliva On-term T0View in PDFView in SVG
Comparison 3Baby Stool Preterm (B+ & B-) T0 vs Baby Stool On-term T0View in PDFView in SVG
Comparison 4Mother Saliva Preterm (B-) vs Mother Saliva On-term (B-)View in PDFView in SVG
Comparison 5Baby Saliva Preterm (B-) T0 vs Baby Saliva On-term (B-) T0View in PDFView in SVG
Comparison 6Baby Stool Preterm (B-) T0 vs Baby Stool On-term (B-) T0View in PDFView in SVG
Comparison 7Mother Saliva Preterm (B-) vs Mother Saliva Preterm (B+)View in PDFView in SVG
Comparison 8Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0View in PDFView in SVG
Comparison 9Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0View in PDFView in SVG
Comparison 10Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0 vs Baby Saliva On-term (B-) T0View in PDFView in SVG
Comparison 11Baby Saliva Preterm (B-) T1 vs Baby Saliva Preterm (B+) T1 vs Baby Saliva On-term (B-) T1View in PDFView in SVG
Comparison 12Baby Saliva Preterm (B-) T2 vs Baby Saliva Preterm (B+) T2 vs Baby Saliva On-term (B-) T2View in PDFView in SVG
Comparison 13Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0 vs Baby Stool On-term (B-) T0View in PDFView in SVG
Comparison 14Baby Stool Preterm (B-) T1 vs Baby Stool Preterm (B+) T1 vs Baby Stool On-term (B-) T1View in PDFView in SVG
Comparison 15Baby Stool Preterm (B-) T2 vs Baby Stool Preterm (B+) T2 vs Baby Stool On-term (B-) T2View in PDFView in SVG
 
 
 

Group Significance of Alpha-diversity Indices

To test whether the alpha diversity among different comparison groups are different statistically, we use the Kruskal Wallis H test provided the "alpha-group-significance" fucntion in the QIIME 2 "diversity" package. Kruskal Wallis H test is the non-parametric alternative to the One Way ANOVA. Non-parametric means that the test doesn’t assume your data comes from a particular distribution. The H test is used when the assumptions for ANOVA aren’t met (like the assumption of normality). It is sometimes called the one-way ANOVA on ranks, as the ranks of the data values are used in the test rather than the actual data points. The H test determines whether the medians of two or more groups are different.

Below are the Kruskal Wallis H test results for each comparison based on three different alpha diversity measures: 1) Observed species (features), 2) Shannon index, and 3) Simpson index.

 
 
Comparison 1.Mother Saliva Preterm (B+ & B-) vs Mother Saliva On-term (B-)Observed FeaturesShannon IndexSimpson Index
Comparison 2.Baby Saliva Preterm (B+ & B-) T0 vs Baby Saliva On-term T0Observed FeaturesShannon IndexSimpson Index
Comparison 3.Baby Stool Preterm (B+ & B-) T0 vs Baby Stool On-term T0Observed FeaturesShannon IndexSimpson Index
Comparison 4.Mother Saliva Preterm (B-) vs Mother Saliva On-term (B-)Observed FeaturesShannon IndexSimpson Index
Comparison 5.Baby Saliva Preterm (B-) T0 vs Baby Saliva On-term (B-) T0Observed FeaturesShannon IndexSimpson Index
Comparison 6.Baby Stool Preterm (B-) T0 vs Baby Stool On-term (B-) T0Observed FeaturesShannon IndexSimpson Index
Comparison 7.Mother Saliva Preterm (B-) vs Mother Saliva Preterm (B+)Observed FeaturesShannon IndexSimpson Index
Comparison 8.Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0Observed FeaturesShannon IndexSimpson Index
Comparison 9.Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0Observed FeaturesShannon IndexSimpson Index
Comparison 10.Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0 vs Baby Saliva On-term (B-) T0Observed FeaturesShannon IndexSimpson Index
Comparison 11.Baby Saliva Preterm (B-) T1 vs Baby Saliva Preterm (B+) T1 vs Baby Saliva On-term (B-) T1Observed FeaturesShannon IndexSimpson Index
Comparison 12.Baby Saliva Preterm (B-) T2 vs Baby Saliva Preterm (B+) T2 vs Baby Saliva On-term (B-) T2Observed FeaturesShannon IndexSimpson Index
Comparison 13.Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0 vs Baby Stool On-term (B-) T0Observed FeaturesShannon IndexSimpson Index
Comparison 14.Baby Stool Preterm (B-) T1 vs Baby Stool Preterm (B+) T1 vs Baby Stool On-term (B-) T1Observed FeaturesShannon IndexSimpson Index
Comparison 15.Baby Stool Preterm (B-) T2 vs Baby Stool Preterm (B+) T2 vs Baby Stool On-term (B-) T2Observed FeaturesShannon IndexSimpson Index
 
 

IX. Analysis - Beta Diversity

 

NMDS and PCoA Plots

Beta diversity compares the similarity (or dissimilarity) of microbial profiles between different groups of samples. There are many different similarity/dissimilarity metrics. In general, they can be quantitative (using sequence abundance, e.g., Bray-Curtis or weighted UniFrac) or binary (considering only presence-absence of sequences, e.g., binary Jaccard or unweighted UniFrac). They can be even based on phylogeny (e.g., UniFrac metrics) or not (non-UniFrac metrics, such as Bray-Curtis, etc.).

For microbiome studies, species profiles of samples can be compared with the Bray-Curtis dissimilarity, which is based on the count data type. The pair-wise Bray-Curtis dissimilarity matrix of all samples can then be subject to either multi-dimensional scaling (MDS, also known as PCoA) or non-metric MDS (NMDS).

MDS/PCoA is a scaling or ordination method that starts with a matrix of similarities or dissimilarities between a set of samples and aims to produce a low-dimensional graphical plot of the data in such a way that distances between points in the plot are close to original dissimilarities.

NMDS is similar to MDS, however it does not use the dissimilarities data, instead it converts them into the ranks and use these ranks in the calculation.

In our beta diversity analysis, Bray-Curtis dissimilarity matrix was first calculated and then plotted by the PCoA and NMDS separately. Below are beta diveristy results for all groups together:

 
 
NMDS and PCoA Plots for All Groups
 
 
 
 
 

The above PCoA and NMDS plots are based on count data. The count data can also be transformed into centered log ratio (CLR) for each species. The CLR data is no longer count data and cannot be used in Bray-Curtis dissimilarity calculation. Instead CLR can be compared with Euclidean distances. When CLR data are compared by Euclidean distance, the distance is also called Aitchison distance.

Below are the NMDS and PCoA plots of the Aitchison distances of the samples:

 
 
 
 
 
 
 
NMDS and PCoA Plots for Individual Comparisons
 
 
Comparison No.Comparison NameNMDAPCoA
Bray-CurtisCLR EuclideanBray-CurtisCLR Euclidean
Comparison 1Mother Saliva Preterm (B+ & B-) vs Mother Saliva On-term (B-)PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 2Baby Saliva Preterm (B+ & B-) T0 vs Baby Saliva On-term T0PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 3Baby Stool Preterm (B+ & B-) T0 vs Baby Stool On-term T0PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 4Mother Saliva Preterm (B-) vs Mother Saliva On-term (B-)PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 5Baby Saliva Preterm (B-) T0 vs Baby Saliva On-term (B-) T0PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 6Baby Stool Preterm (B-) T0 vs Baby Stool On-term (B-) T0PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 7Mother Saliva Preterm (B-) vs Mother Saliva Preterm (B+)PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 8Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 9Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 10Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0 vs Baby Saliva On-term (B-) T0PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 11Baby Saliva Preterm (B-) T1 vs Baby Saliva Preterm (B+) T1 vs Baby Saliva On-term (B-) T1PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 12Baby Saliva Preterm (B-) T2 vs Baby Saliva Preterm (B+) T2 vs Baby Saliva On-term (B-) T2PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 13Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0 vs Baby Stool On-term (B-) T0PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 14Baby Stool Preterm (B-) T1 vs Baby Stool Preterm (B+) T1 vs Baby Stool On-term (B-) T1PDFSVGPDFSVGPDFSVGPDFSVG
Comparison 15Baby Stool Preterm (B-) T2 vs Baby Stool Preterm (B+) T2 vs Baby Stool On-term (B-) T2PDFSVGPDFSVGPDFSVGPDFSVG
 
 
 
 
 

Interactive 3D PCoA Plots - Bray-Curtis Dissimilarity

 
 
 

Interactive 3D PCoA Plots - Euclidean Distance

 
 
 

Interactive 3D PCoA Plots - Correlation Coefficients

 
 
 

Group Significance of Beta-diversity Indices

To test whether the between-group dissimilarities are significantly greater than the within-group dissimilarities, the "beta-group-significance" function provided in the QIIME 2 "diversity" package was used with PERMANOVA (permutational multivariate analysis of variance) as the group significant testing method.

Three beta diversity matrics were used: 1) Bray–Curtis dissimilarity 2) Correlation coefficient matrix , and 3) Aitchison distance (Euclidean distance between clr-transformed compositions).

 
 
Comparison 1.Mother Saliva Preterm (B+ & B-) vs Mother Saliva On-term (B-)Bray–CurtisCorrelationAitchison
Comparison 2.Baby Saliva Preterm (B+ & B-) T0 vs Baby Saliva On-term T0Bray–CurtisCorrelationAitchison
Comparison 3.Baby Stool Preterm (B+ & B-) T0 vs Baby Stool On-term T0Bray–CurtisCorrelationAitchison
Comparison 4.Mother Saliva Preterm (B-) vs Mother Saliva On-term (B-)Bray–CurtisCorrelationAitchison
Comparison 5.Baby Saliva Preterm (B-) T0 vs Baby Saliva On-term (B-) T0Bray–CurtisCorrelationAitchison
Comparison 6.Baby Stool Preterm (B-) T0 vs Baby Stool On-term (B-) T0Bray–CurtisCorrelationAitchison
Comparison 7.Mother Saliva Preterm (B-) vs Mother Saliva Preterm (B+)Bray–CurtisCorrelationAitchison
Comparison 8.Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0Bray–CurtisCorrelationAitchison
Comparison 9.Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0Bray–CurtisCorrelationAitchison
Comparison 10.Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0 vs Baby Saliva On-term (B-) T0Bray–CurtisCorrelationAitchison
Comparison 11.Baby Saliva Preterm (B-) T1 vs Baby Saliva Preterm (B+) T1 vs Baby Saliva On-term (B-) T1Bray–CurtisCorrelationAitchison
Comparison 12.Baby Saliva Preterm (B-) T2 vs Baby Saliva Preterm (B+) T2 vs Baby Saliva On-term (B-) T2Bray–CurtisCorrelationAitchison
Comparison 13.Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0 vs Baby Stool On-term (B-) T0Bray–CurtisCorrelationAitchison
Comparison 14.Baby Stool Preterm (B-) T1 vs Baby Stool Preterm (B+) T1 vs Baby Stool On-term (B-) T1Bray–CurtisCorrelationAitchison
Comparison 15.Baby Stool Preterm (B-) T2 vs Baby Stool Preterm (B+) T2 vs Baby Stool On-term (B-) T2Bray–CurtisCorrelationAitchison
 
 
 

X. Analysis - Differential Abundance

16S rRNA next generation sequencing (NGS) generates a fixed number of reads that reflect the proportion of different species in a sample, i.e., the relative abundance of species, instead of the absolute abundance. In Mathematics, measurements involving probabilities, proportions, percentages, and ppm can all be thought of as compositional data. This makes the microbiome read count data “compositional” (Gloor et al, 2017). In general, compositional data represent parts of a whole which only carry relative information (http://www.compositionaldata.com/).

The problem of microbiome data being compositional arises when comparing two groups of samples for identifying “differentially abundant” species. A species with the same absolute abundance between two conditions, its relative abundances in the two conditions (e.g., percent abundance) can become different if the relative abundance of other species change greatly. This problem can lead to incorrect conclusion in terms of differential abundance for microbial species in the samples.

When studying differential abundance (DA), the current better approach is to transform the read count data into log ratio data. The ratios are calculated between read counts of all species in a sample to a “reference” count (e.g., mean read count of the sample). The log ratio data allow the detection of DA species without being affected by percentage bias mentioned above

In this report, a compositional DA analysis tool “ANCOM” (analysis of composition of microbiomes) was used. ANCOM transforms the count data into log-ratios and thus is more suitable for comparing the composition of microbiomes in two or more populations. "ANCOM" generates a table of features with W-statistics and whether the null hypothesis is rejected. The “W” is the W-statistic, or number of features that a single feature is tested to be significantly different against. Hence the higher the "W" the more statistical sifgnificant that a feature/species is differentially abundant.


References:

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017 Nov 15;8:2224. doi: 10.3389/fmicb.2017.02224. PMID: 29187837; PMCID: PMC5695134.

Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015 May 29;26:27663. doi: 10.3402/mehd.v26.27663. PMID: 26028277; PMCID: PMC4450248.

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

 
 

ANCOM Differential Abundance Analysis

 
ANCOM Results for Individual Comparisons
Comparison No.Comparison Name
Comparison 1.Mother Saliva Preterm (B+ & B-) vs Mother Saliva On-term (B-)
Comparison 2.Baby Saliva Preterm (B+ & B-) T0 vs Baby Saliva On-term T0
Comparison 3.Baby Stool Preterm (B+ & B-) T0 vs Baby Stool On-term T0
Comparison 4.Mother Saliva Preterm (B-) vs Mother Saliva On-term (B-)
Comparison 5.Baby Saliva Preterm (B-) T0 vs Baby Saliva On-term (B-) T0
Comparison 6.Baby Stool Preterm (B-) T0 vs Baby Stool On-term (B-) T0
Comparison 7.Mother Saliva Preterm (B-) vs Mother Saliva Preterm (B+)
Comparison 8.Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0
Comparison 9.Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0
Comparison 10.Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0 vs Baby Saliva On-term (B-) T0
Comparison 11.Baby Saliva Preterm (B-) T1 vs Baby Saliva Preterm (B+) T1 vs Baby Saliva On-term (B-) T1
Comparison 12.Baby Saliva Preterm (B-) T2 vs Baby Saliva Preterm (B+) T2 vs Baby Saliva On-term (B-) T2
Comparison 13.Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0 vs Baby Stool On-term (B-) T0
Comparison 14.Baby Stool Preterm (B-) T1 vs Baby Stool Preterm (B+) T1 vs Baby Stool On-term (B-) T1
Comparison 15.Baby Stool Preterm (B-) T2 vs Baby Stool Preterm (B+) T2 vs Baby Stool On-term (B-) T2
 
 

ANCOM-BC2 Differential Abundance Analysis

 

Starting with version V1.2, we include the results of ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) (Lin and Peddada 2020). ANCOM-BC is an updated version of "ANCOM" that:
(a) provides statistically valid test with appropriate p-values,
(b) provides confidence intervals for differential abundance of each taxon,
(c) controls the False Discovery Rate (FDR),
(d) maintains adequate power, and
(e) is computationally simple to implement.

The bias correction (BC) addresses a challenging problem of the bias introduced by differences in the sampling fractions across samples. This bias has been a major hurdle in performing DA analysis of microbiome data. ANCOM-BC estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework.

Starting with version V1.43, ANCOM-BC2 is used instead of ANCOM-BC, So that multiple pairwise directional test can be performed (if there are more than two gorups in a comparison). When performning pairwise directional test, the mixed directional false discover rate (mdFDR) is taken into account. The mdFDR is the combination of false discovery rate due to multiple testing, multiple pairwise comparisons, and directional tests within each pairwise comparison. The mdFDR is adopted from (Guo, Sarkar, and Peddada 2010; Grandhi, Guo, and Peddada 2016). For more detail explanation and additional features of ANCOM-BC2 please see author's documentation.

References:

Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020 Jul 14;11(1):3514. doi: 10.1038/s41467-020-17041-7. PMID: 32665548; PMCID: PMC7360769.

Guo W, Sarkar SK, Peddada SD. Controlling false discoveries in multidimensional directional decisions, with applications to gene expression data on ordered categories. Biometrics. 2010 Jun;66(2):485-92. doi: 10.1111/j.1541-0420.2009.01292.x. Epub 2009 Jul 23. PMID: 19645703; PMCID: PMC2895927.

Grandhi A, Guo W, Peddada SD. A multiple testing procedure for multi-dimensional pairwise comparisons with application to gene expression studies. BMC Bioinformatics. 2016 Feb 25;17:104. doi: 10.1186/s12859-016-0937-5. PMID: 26917217; PMCID: PMC4768411.

 
 
ANCOM-BC Results for Individual Comparisons
 
Comparison No.Comparison Name
Comparison 1.Mother Saliva Preterm (B+ & B-) vs Mother Saliva On-term (B-)
Comparison 2.Baby Saliva Preterm (B+ & B-) T0 vs Baby Saliva On-term T0
Comparison 3.Baby Stool Preterm (B+ & B-) T0 vs Baby Stool On-term T0
Comparison 4.Mother Saliva Preterm (B-) vs Mother Saliva On-term (B-)
Comparison 5.Baby Saliva Preterm (B-) T0 vs Baby Saliva On-term (B-) T0
Comparison 6.Baby Stool Preterm (B-) T0 vs Baby Stool On-term (B-) T0
Comparison 7.Mother Saliva Preterm (B-) vs Mother Saliva Preterm (B+)
Comparison 8.Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0
Comparison 9.Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0
Comparison 10.Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0 vs Baby Saliva On-term (B-) T0
Comparison 11.Baby Saliva Preterm (B-) T1 vs Baby Saliva Preterm (B+) T1 vs Baby Saliva On-term (B-) T1
Comparison 12.Baby Saliva Preterm (B-) T2 vs Baby Saliva Preterm (B+) T2 vs Baby Saliva On-term (B-) T2
Comparison 13.Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0 vs Baby Stool On-term (B-) T0
Comparison 14.Baby Stool Preterm (B-) T1 vs Baby Stool Preterm (B+) T1 vs Baby Stool On-term (B-) T1
Comparison 15.Baby Stool Preterm (B-) T2 vs Baby Stool Preterm (B+) T2 vs Baby Stool On-term (B-) T2
 
 
 

LEfSe - Linear Discriminant Analysis Effect Size

LEfSe (Linear Discriminant Analysis Effect Size) is an alternative method to find "organisms, genes, or pathways that consistently explain the differences between two or more microbial communities" (Segata et al., 2011). Specifically, LEfSe uses rank-based Kruskal-Wallis (KW) sum-rank test to detect features with significant differential (relative) abundance with respect to the class of interest. Since it is rank-based, instead of proportional based, the differential species identified among the comparison groups is less biased (than percent abundance based).

Reference:

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011 Jun 24;12(6):R60. doi: 10.1186/gb-2011-12-6-r60. PMID: 21702898; PMCID: PMC3218848.

 
Mother Saliva Preterm (B+ & B-) vs Mother Saliva On-term (B-)
 
 
 
 
 
 
 
LEfSe Results for All Comparisons
 
Comparison No.Comparison Name
Comparison 1.Mother Saliva Preterm (B+ & B-) vs Mother Saliva On-term (B-)
Comparison 2.Baby Saliva Preterm (B+ & B-) T0 vs Baby Saliva On-term T0
Comparison 3.Baby Stool Preterm (B+ & B-) T0 vs Baby Stool On-term T0
Comparison 4.Mother Saliva Preterm (B-) vs Mother Saliva On-term (B-)
Comparison 5.Baby Saliva Preterm (B-) T0 vs Baby Saliva On-term (B-) T0
Comparison 6.Baby Stool Preterm (B-) T0 vs Baby Stool On-term (B-) T0
Comparison 7.Mother Saliva Preterm (B-) vs Mother Saliva Preterm (B+)
Comparison 8.Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0
Comparison 9.Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0
Comparison 10.Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0 vs Baby Saliva On-term (B-) T0
Comparison 11.Baby Saliva Preterm (B-) T1 vs Baby Saliva Preterm (B+) T1 vs Baby Saliva On-term (B-) T1
Comparison 12.Baby Saliva Preterm (B-) T2 vs Baby Saliva Preterm (B+) T2 vs Baby Saliva On-term (B-) T2
Comparison 13.Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0 vs Baby Stool On-term (B-) T0
Comparison 14.Baby Stool Preterm (B-) T1 vs Baby Stool Preterm (B+) T1 vs Baby Stool On-term (B-) T1
Comparison 15.Baby Stool Preterm (B-) T2 vs Baby Stool Preterm (B+) T2 vs Baby Stool On-term (B-) T2
 
 

XI. Analysis - Heatmap Profile

 

Species vs Sample Abundance Heatmap for All Samples

 
 
 

Heatmaps for Individual Comparisons

 
A) Two-way clustering - clustered on both columns (Samples) and rows (organism)
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Mother Saliva Preterm (B+ & B-) vs Mother Saliva On-term (B-)PDFSVGPDFSVGPDFSVG
Comparison 2Baby Saliva Preterm (B+ & B-) T0 vs Baby Saliva On-term T0PDFSVGPDFSVGPDFSVG
Comparison 3Baby Stool Preterm (B+ & B-) T0 vs Baby Stool On-term T0PDFSVGPDFSVGPDFSVG
Comparison 4Mother Saliva Preterm (B-) vs Mother Saliva On-term (B-)PDFSVGPDFSVGPDFSVG
Comparison 5Baby Saliva Preterm (B-) T0 vs Baby Saliva On-term (B-) T0PDFSVGPDFSVGPDFSVG
Comparison 6Baby Stool Preterm (B-) T0 vs Baby Stool On-term (B-) T0PDFSVGPDFSVGPDFSVG
Comparison 7Mother Saliva Preterm (B-) vs Mother Saliva Preterm (B+)PDFSVGPDFSVGPDFSVG
Comparison 8Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0PDFSVGPDFSVGPDFSVG
Comparison 9Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0PDFSVGPDFSVGPDFSVG
Comparison 10Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0 vs Baby Saliva On-term (B-) T0PDFSVGPDFSVGPDFSVG
Comparison 11Baby Saliva Preterm (B-) T1 vs Baby Saliva Preterm (B+) T1 vs Baby Saliva On-term (B-) T1PDFSVGPDFSVGPDFSVG
Comparison 12Baby Saliva Preterm (B-) T2 vs Baby Saliva Preterm (B+) T2 vs Baby Saliva On-term (B-) T2PDFSVGPDFSVGPDFSVG
Comparison 13Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0 vs Baby Stool On-term (B-) T0PDFSVGPDFSVGPDFSVG
Comparison 14Baby Stool Preterm (B-) T1 vs Baby Stool Preterm (B+) T1 vs Baby Stool On-term (B-) T1PDFSVGPDFSVGPDFSVG
Comparison 15Baby Stool Preterm (B-) T2 vs Baby Stool Preterm (B+) T2 vs Baby Stool On-term (B-) T2PDFSVGPDFSVGPDFSVG
 
 
B) One-way clustering - clustered on rows (organism) only
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Mother Saliva Preterm (B+ & B-) vs Mother Saliva On-term (B-)PDFSVGPDFSVGPDFSVG
Comparison 2Baby Saliva Preterm (B+ & B-) T0 vs Baby Saliva On-term T0PDFSVGPDFSVGPDFSVG
Comparison 3Baby Stool Preterm (B+ & B-) T0 vs Baby Stool On-term T0PDFSVGPDFSVGPDFSVG
Comparison 4Mother Saliva Preterm (B-) vs Mother Saliva On-term (B-)PDFSVGPDFSVGPDFSVG
Comparison 5Baby Saliva Preterm (B-) T0 vs Baby Saliva On-term (B-) T0PDFSVGPDFSVGPDFSVG
Comparison 6Baby Stool Preterm (B-) T0 vs Baby Stool On-term (B-) T0PDFSVGPDFSVGPDFSVG
Comparison 7Mother Saliva Preterm (B-) vs Mother Saliva Preterm (B+)PDFSVGPDFSVGPDFSVG
Comparison 8Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0PDFSVGPDFSVGPDFSVG
Comparison 9Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0PDFSVGPDFSVGPDFSVG
Comparison 10Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0 vs Baby Saliva On-term (B-) T0PDFSVGPDFSVGPDFSVG
Comparison 11Baby Saliva Preterm (B-) T1 vs Baby Saliva Preterm (B+) T1 vs Baby Saliva On-term (B-) T1PDFSVGPDFSVGPDFSVG
Comparison 12Baby Saliva Preterm (B-) T2 vs Baby Saliva Preterm (B+) T2 vs Baby Saliva On-term (B-) T2PDFSVGPDFSVGPDFSVG
Comparison 13Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0 vs Baby Stool On-term (B-) T0PDFSVGPDFSVGPDFSVG
Comparison 14Baby Stool Preterm (B-) T1 vs Baby Stool Preterm (B+) T1 vs Baby Stool On-term (B-) T1PDFSVGPDFSVGPDFSVG
Comparison 15Baby Stool Preterm (B-) T2 vs Baby Stool Preterm (B+) T2 vs Baby Stool On-term (B-) T2PDFSVGPDFSVGPDFSVG
 
 
C) No clustering
Comparison No.Comparison NameFamily LevelGenus LevelSpecies Level
Comparison 1Mother Saliva Preterm (B+ & B-) vs Mother Saliva On-term (B-)PDFSVGPDFSVGPDFSVG
Comparison 2Baby Saliva Preterm (B+ & B-) T0 vs Baby Saliva On-term T0PDFSVGPDFSVGPDFSVG
Comparison 3Baby Stool Preterm (B+ & B-) T0 vs Baby Stool On-term T0PDFSVGPDFSVGPDFSVG
Comparison 4Mother Saliva Preterm (B-) vs Mother Saliva On-term (B-)PDFSVGPDFSVGPDFSVG
Comparison 5Baby Saliva Preterm (B-) T0 vs Baby Saliva On-term (B-) T0PDFSVGPDFSVGPDFSVG
Comparison 6Baby Stool Preterm (B-) T0 vs Baby Stool On-term (B-) T0PDFSVGPDFSVGPDFSVG
Comparison 7Mother Saliva Preterm (B-) vs Mother Saliva Preterm (B+)PDFSVGPDFSVGPDFSVG
Comparison 8Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0PDFSVGPDFSVGPDFSVG
Comparison 9Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0PDFSVGPDFSVGPDFSVG
Comparison 10Baby Saliva Preterm (B-) T0 vs Baby Saliva Preterm (B+) T0 vs Baby Saliva On-term (B-) T0PDFSVGPDFSVGPDFSVG
Comparison 11Baby Saliva Preterm (B-) T1 vs Baby Saliva Preterm (B+) T1 vs Baby Saliva On-term (B-) T1PDFSVGPDFSVGPDFSVG
Comparison 12Baby Saliva Preterm (B-) T2 vs Baby Saliva Preterm (B+) T2 vs Baby Saliva On-term (B-) T2PDFSVGPDFSVGPDFSVG
Comparison 13Baby Stool Preterm (B-) T0 vs Baby Stool Preterm (B+) T0 vs Baby Stool On-term (B-) T0PDFSVGPDFSVGPDFSVG
Comparison 14Baby Stool Preterm (B-) T1 vs Baby Stool Preterm (B+) T1 vs Baby Stool On-term (B-) T1PDFSVGPDFSVGPDFSVG
Comparison 15Baby Stool Preterm (B-) T2 vs Baby Stool Preterm (B+) T2 vs Baby Stool On-term (B-) T2PDFSVGPDFSVGPDFSVG
 
 

XII. Analysis - Network Association

To analyze the co-occurrence or co-exclusion between microbial species among different samples, network correlation analysis tools are usually used for this purpose. However, microbiome count data are compositional. If count data are normalized to the total number of counts in the sample, the data become not independent and traditional statistical metrics (e.g., correlation) for the detection of specie-species relationships can lead to spurious results. In addition, sequencing-based studies typically measure hundreds of OTUs (species) on few samples; thus, inference of OTU-OTU association networks is severely under-powered. Here we use SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues (Kurtz et al., 2015). SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. SPIEC-EASI provides two algorithms for network inferencing – 1) Meinshausen-Bühlmann's neighborhood selection (MB method) and inverse covariance selection (GLASSO method, i.e., graphical least absolute shrinkage and selection operator). This is fundamentally distinct from SparCC, which essentially estimate pairwise correlations. In addition to these two methods, we provide the results of a third method - SparCC (Sparse Correlations for Compositional Data)(Friedman & Alm 2012), which is also a method for inferring correlations from compositional data. SparCC estimates the linear Pearson correlations between the log-transformed components.


References:

Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015 May 7;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226. PMID: 25950956; PMCID: PMC4423992.

Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20. PMID: 23028285; PMCID: PMC3447976.

 

SPIEC-EASI Network Inference by Neighborhood Selection (MB Method)

 

 

 

Association Network Inference by SparCC

 

 

 
 

XIII. Disclaimer

The results of this analysis are for research purpose only. They are not intended to diagnose, treat, cure, or prevent any disease. Forsyth and FOMC are not responsible for use of information provided in this report outside the research area.

 

Copyright FOMC 2023